KCSE 2008 Chemistry Paper 2 Answers

1.	(a)	(i)	Biogas contains methane which is a fuel	(1
mark)				
		(ii)	Pass a known volume of (V1) through NaOH or KOH or lime water O	CO_2

will be absorbed. Collect all the gas that comes out of NaOH/KOH or lime water in a gas syringe (V_2).

$$\% = \frac{V_2}{V_1} \times 100$$
(3 marks)

(b) (i) Moles of methane in the
Cylinder =
$$\frac{35.2 \times 5 \times 1000}{100 \times 16}$$

= 110 moles

(4 marks)

(c) (i) Global warming

(ii)	I	N ₂ O=Ammonium fertilizer (nitrate)			
	II	CCl ₃ F=Aerosals, Sprays, Propellants, Refrigerators	(3		

marks)

2. (a) (i)
$$2KNO_3(s) \rightarrow 2KNO_2(s) + O_{2(g)}$$

(ii)
$$2AgNO_3(s) \rightarrow 2Ag(s) + 2NO_{2(g)} + O_{2(g)}$$

(2 marks)

- (b) (i) *Period 2*: It's electronic arrangement is 2, 3 and this means that it is the 2nd energy level being filled. Therefore it belongs to period 2. (2 marks)
 - (ii) I. Across a period from left to right the nuclear charge increases exerting grater pull on the available electrons resulting in reduction of atomic radius.
 - (2 marks)
 - II. A4 gains an electron: The incoming electron is reppelled by other electrons in the atom. (2 marks)

.

3. (a)

- Filtration of air.
- Passing through sodium hydroxide.
- Air cooled to become liquid.
- Liquid air is allowed to evaporate (4 marks)
- (b) (i) Nitrogen (II) oxide (1 mark)

			$NH3(g) + CuO_{(S)} \rightarrow N_{2(g)} + H_2O + Cu_{(S)}$	
	() man	ka)	Reduction	
	(2 mun	(3)		
		(iii)	$\mathrm{NH}_4\mathrm{NO}_{3(\mathrm{s})} \rightarrow \mathrm{N}_2\mathrm{O}_{(\mathrm{g})} + 2\mathrm{H}_2\mathrm{O}_{(1)}$	
	(1 marl	k)		
mark)		(iv)	Fertilizers making explosives.	(1
mark)	(c)	(i)	G or G ²⁺	(1
		(ii)	$E_{(aq)}^{2+} + 20H_{(aq)} \rightarrow E(OH)_{2(s)}$	
	(1 marl	k)		
4.	(a)	(i)	When a change is made to the conditions of a system is dynamic equilibrium the system moves so as to oppose that change. (1 mark)	
		(ii)	Pressure has no effect on the position of the equilibrium since the num moles of gaseous reactants is equal to number of moles of gaseous pro	ber of ducts.
	(2 marl	ks)		
		(iii)	Δ H is Negative: Since lowering of temperature moves the equilibriu the direction in which heat energy is absorbed. <i>(2 marks)</i>	m in
	(b) (1 mark	(i) k)	MnO ₂	
marks)		(ii)	Decomposition at 24 secs is 1.428 cm ³ /sec	(2
mark)		(iii)	The reactant has been used up after 50 secs	(1
5.	(a)		$H = C = C \qquad H = H$ $H = C = C \qquad H = H$ or CH ₃ CCH (<i>1 mark</i>)	
	(b) (1 mari	(i) k)	Heat 700 – 900k	
			Use of catalyst such alumina (AI ₂ O ₃) or Selica (SiO ₂)	
mark)		(ii)	H – is ethane CH_3CH_3 or C_2H	(1
		(iii)	I. They pollute environment produces poisonous gases. (1 mark	k)

		<i>i.</i> Hydration. (1 mark)	
		ii. Ethyl Propanoate.	
		0	
		CH ₃ CH ₂ C CH2CH ₃	
		$(C_2H_4)n=16,800$ (2) marks)	2
	(iv)	$\therefore n = \frac{16,800}{28} = 600 \text{ monomer}$	
(7 mari	ks)		
(c)	(i)	<i>M</i> : is unsaturated hydrocarbon and hence it undergoes addition reaction.	
(2 mari	ks)		
	(ii)	N: this because N is an acidic compound. (A)	2
(a)	(i)	Both OH^- and SO_4^{2-} migrate to the anode where OH^- are preferentially discharged forming oxygen gas. (<i>marks</i>)	2
	(ii)	Copper anode would dissolve to give Cu ²⁺ ions as less energy is required this process. (2 marks)	for
(b)	(i)	Copper ore - Copper pyrites Copper glance Malachite (1 mark)	
	(ii)	$Cu_{(aq)}^{2+} + 2e^{-} \rightarrow Cu_{(s)}$ (1 mark)	
	(iii)	$\begin{array}{c} Q=IT\\ 0.5\times18\times60 \end{array}$	
		= 540 coulombs 1 mole of electronics deposits 1 mole of silver	
		$96500C \equiv 108g \text{ of silver}$	
		$540C = \frac{108 \times 540}{96500}$	
		= 0.604g	
	(iv)	Prevent rusting. (3 marks) Decoration/improve appearance. (. marks)	2

marks)

6.

