KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: CHEM 412

COURSE TITLE: ADVANCED STEREOCHEMISTRY AND

REACTION MECHANISM

- STREAM: SESSION VII & VIII
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 13/08/2009

INSTRUCTIONS TO CANDIDATES:

Attempt all questions. Each question = $17 \frac{1}{2}$ Marks

PLEASE TURN OVER

QUESTION ONE [17 ¹/₂ Marks]

(a) Define each of the following terms:

- (i) Enantiomer
- (ii) Stereocentre
- (iii) Racemic mixture
- (iv) Optical activity

(b) Identify the chiral centres of the following molecules (Use asterisk *) [4 Mks]

(c) Assign R and S configurations to the following molecules:

[8 Mks]

[4 Mks]

(d) Briefly explain the effect	t of plane-polarized light when it is pas	sed through a
50:50 racemic mixture		[1 ½ Mks]
QUESTION TWO	[17 ½ Marks]	
(a) Define the following terms:		[3 Mks]
(i) Conformations		
(ii) Conformational analysis		
(b) (i) Draw the axial and equatorial conformations of methylcyclohexane [1 Mk]		
(ii) With a reason state the most stable configuration of methylcyclohexane		
		[1 ½ Mks]
(c) Sketch the boat and staggered conformations of cyclohexane. Which conformation		
is more stable? Explain	your answer with reasons	[6 Mks]
(d) Using an energy level diagram show the positions of the boat and		
chair conformations of methyl cyclohexane		[6 Mks]

QUESTION THREE [17 ¹/₂ Marks]

(a) Define the following terms

- (i) HOMO
- (ii) Curly arrow
- (iii) Electrophile
- (iv) Leaving group
- (v) Mechanism

(b) (i) Using molecular orbitals explain how acetone, $(CH_3)_2C = O$, can act as both an electrophile and a nucleophile [4 Mks]

[5 Mks]

(c) Consider the following reaction

(i) State the importance of the reagents H_2O and THF in the reaction.

[2 Mks]

[4 ¹/₂ Mks]

- (ii) Using curly arrows propose a mechanism for the above reaction.
- (iii) With the help of frontier molecular orbitals show the HOMO LUMO interactions in the above reaction. [2 Mks]

QUESTION FOUR [17 ¹/₂ Marks]

(a) Define the following terms:

- (i) Electrocyclic reactions
 - (ii) Concerted reactions
 - (iii) Stereospecific reaction
 - (iv) Conrotatory process
- (b) With the aid of orbital diagrams show the products A, B, C and D of the following reactions: [8 Mks]

[4 Mks]

(c) State the products of the following reactions:

[2 Mks]

(d) Using NaCN as HOMO and acetone as LUMO explain the term Burgi – Dunitz trajectory.
[3 ¹/₂ Mks]