COURSE CODE: CHEM 412

COURSE TITLE: ADVANCED STEREOCHEMISTRY AND

REACTION MECHANISM

STREAM: SESSION VII \& VIII
DAY: THURSDAY
TIME:
2.00-4.00 P.M.

DATE:
13/08/2009

INSTRUCTIONS TO CANDIDATES:
Attempt all questions.
Each question $=171 / 2$ Marks

PLEASE TURN OVER

QUESTION ONE
 [17 ½ Marks]

(a) Define each of the following terms:
(i) Enantiomer
(ii) Stereocentre
(iii) Racemic mixture
(iv) Optical activity
(b) Identify the chiral centres of the following molecules (Use asterisk *) [4 Mks]
(b) (i)

(ii) 3-Methylcyclopent-1-enol
(iii) 2-Bromo-2-methylbutane
(iv)

(c) Assign R and S configurations to the following molecules:
[8 Mks]
(i)

(ii)

(iv)

(d) Briefly explain the effect of plane-polarized light when it is passed through a 50:50 racemic mixture
[1 ½ Mks]

QUESTION TWO [17 ½ Marks]

(a) Define the following terms:
(i) Conformations
(ii) Conformational analysis
(b) (i) Draw the axial and equatorial conformations of methylcyclohexane [1 Mk]
(ii) With a reason state the most stable configuration of methylcyclohexane
[$11 / 2 \mathrm{Mks}$]
(c) Sketch the boat and staggered conformations of cyclohexane. Which conformation is more stable? Explain your answer with reasons
(d) Using an energy level diagram show the positions of the boat and chair conformations of methyl cyclohexane

QUESTION THREE

[17 ½ Marks]
(a) Define the following terms
(i) HOMO
(ii) Curly arrow
(iii) Electrophile
(iv) Leaving group
(v) Mechanism
(b) (i) Using molecular orbitals explain how acetone, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$, can act as both an electrophile and a nucleophile
(c) Consider the following reaction

(i) State the importance of the reagents $\mathrm{H}_{2} \mathrm{O}$ and THF in the reaction.
[2 Mks]
(ii) Using curly arrows propose a mechanism for the above reaction.
(iii) With the help of frontier molecular orbitals show the HOMO - LUMO interactions in the above reaction.
[2 Mks]

QUESTION FOUR [17 ½ Marks]

(a) Define the following terms:
(i) Electrocyclic reactions
(ii) Concerted reactions
(iii) Stereospecific reaction
(iv) Conrotatory process
(b) With the aid of orbital diagrams show the products $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of the following reactions:
(i)

Trans,trans - 2,4-hexadiene

(ii)

Trans, cis, trans - 2,4,6 - octatriene
hv

D
(c) State the products of the following reactions:
(i)

(ii)

(d) Using NaCN as HOMO and acetone as LUMO explain the term Burgi - Dunitz trajectory.

