

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 327

COURSE TITLE: APPLIED NUMERICAL ANALYSIS

STREAM: Y3S2

DAY:
WEDNESDAY
TIME:
$9.00-11.00$ A.M.
DATE:
26/03/2009

INSTRUCTIONS:

Answer question ONE and ANY TWO questions

PLEASE TURN OVER

SECTION A (answer ALL 30 marks)

Question 1.
i) What is an algorithm? State the five characteristics of a good algorithm.
ii) Write an algorithm and C++ program to implement the solution of a quadratic formula.
iii) Discuss the errors encountered in performing numerical calculations. (5 marks)
iv) Using Interhalving method find a real root of the equation $\mathrm{x}^{2}-25=0$.
v) Write a comprehensive Algorithm to demonstrate how the above method can be solved in programming.

SECTION B (attempt any TWO 20 marks)

Question 2

i) Using the Regula falsi method find a positive root of $\mathbf{f}(\mathbf{x})=\mathbf{x}^{2}-$ $\mathbf{2 5}=\mathbf{0}$.
ii) Assume a set of instructions are to be given to a student to solve the following pair of equations for x and y given the values of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q}$ and \mathbf{r}.

$$
\begin{aligned}
& a x+b y=c \\
& p x+q y=r
\end{aligned}
$$

Write a relevant algorithm and its object oriented c++ program to evaluate the above set of equations.

Question 3

Solve by Gauss-elimination method, the following system of equations.
i)

$$
\begin{align*}
& 2 x+y+4 z=12 \\
& 8 x-3 y+2 z=20 \\
& 4 x-11 y-Z=33 \tag{8marks}
\end{align*}
$$

ii) C++ object oriented program to solve a 3×3 matrix.

Question 4

i) Solve $x^{2}-5 x+6=0$ using the Newton - Raphson method start with $x_{0}=4$ carry out five iterations.
ii) Discuss and Compare the iterative methods i.e. Newton-Raphson method, bisection method, falsi position method, secant method.
(12 marks)

Question 5

i) Write a program to implement the trapezoidal rule.
ii) Using Simpson's $1 / 3^{\text {rd }}$ rule solve $\int_{0}^{1} x^{2} d x$ (5 marks)
iii) Write a program for the Simpson's rule in (ii) above (8 marks)

