KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 327

COURSE TITLE: APPLIED NUMERICAL METHODS

- STREAM: Y3S2
- DAY: MONDAY
- TIME: 9.00 11.00 A.M.
- DATE: 10/08/2009

INSTRUCTIONS:

Answer Question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION-1 (30 MARKS)

- 1. Write a program in C/C++ to generate the following pattern
 - 2
 - 46
 - 40

	8 10 12	
	14 16 18 20	(5mks)
2.	Write a C/C++ program to find the reverse a given number and the sum of its digits	(5mks)
3.	Write a C/C++ program to add two 3 by 3 matrices	(7mks)
4.	Write a program to implement Simpson's 1/3 rd rule.	(7mks)

5. Write a program to solve a quadratic equation (6mks)

QUESTION-2 (20 MARKS)

1.	Write a program to find the transpose of a matrix	(8mks)
2.	Write a program to find the norm and trace of a matrix	(9mks)
3.	Write an algorithm for the gauss elimination method	(3mks)

QUESTION-3 (20 MARKS)

1.	Write a C/C++ program to implement the bisection method	(10mks)
	i) Apply three steps of Newton's method to find a better approximation of the minimum of the function $f(x) = x_2 - 4x + 2$ starting with the point $x_0 = 3$.	(3mks)
	ii) Write a program for the above N-R method	(7mks)

QUESTION-4 (20 MARKS)

1.	Write a program for the Euler's method	(8mks)
2.	Write an algorithm for the Heun's method (Runge kutta 2 nd order method)	(8mks)
3.	Use four steps of Euler's method to approximate the value of $y(0)$ given the	
	initial-value problem $y_{(1)}(t) = y(t) - 3$, $y(-2) = 1$.	(4mks)

QUESTION-5 (20 MARKS)

1.	Write a program to implement Simpson's 3/8 rule	(8mks)	
2.	Write a program for the trapezoidal rule	(8mks)	
3.	Integrate $f(x) = x^3 - 2x - 2$ on the interval [0, 2] using the trapezoid rule and then as	ing the trapezoid rule and then again	
	with one step of Simpson's rule.	(4mks)	