

UNIVERSITY EXAMINATIONS
2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 327
COURSE TITLE: APPLIED NUMERICAL METHODS
STREAM: Y3S2
DAY:
MONDAY
TIME:
9.00-11.00 A.M.

DATE:
10/08/2009

INSTRUCTIONS:
Answer Question ONE and any other TWO questions

QUESTION-1 (30 MARKS)

1. Write a program in $\mathrm{C} / \mathrm{C}++$ to generate the following pattern

2
46
81012
14161820
(5mks)
2. Write a $\mathrm{C} / \mathrm{C}++$ program to find the reverse a given number and the sum of its digits (5 mks)
3. Write a C/C++ program to add two 3 by 3 matrices
4. Write a program to implement Simpson's $1 / 3^{\text {rd }}$ rule.
5. Write a program to solve a quadratic equation

QUESTION-2 (20 MARKS)

1. Write a program to find the transpose of a matrix
2. Write a program to find the norm and trace of a matrix
3. Write an algorithm for the gauss elimination method

QUESTION-3 (20 MARKS)

1. Write a $\mathrm{C} / \mathrm{C}++$ program to implement the bisection method
i) Apply three steps of Newton's method to find a better approximation of the minimum of the function $\mathrm{f}(x)=x_{2}-4 x+2$ starting with the point $x_{0}=3$.
ii) Write a program for the above $\mathrm{N}-\mathrm{R}$ method

QUESTION-4 (20 MARKS)

1. Write a program for the Euler's method
2. Write an algorithm for the Heun's method (Runge kutta $2^{\text {nd }}$ order method)
3. Use four steps of Euler's method to approximate the value of $y(0)$ given the initial-value problem $y_{(1)}(t)=y(t)-3, y(-2)=1$.

QUESTION-5 (20 MARKS)

1. Write a program to implement Simpson's $3 / 8$ rule
2. Write a program for the trapezoidal rule
3. Integrate $\mathrm{f}(x)=\mathrm{x}^{3}-2 \mathrm{x}-2$ on the interval [0, 2] using the trapezoid rule and then again with one step of Simpson's rule.
