

# **KABARAK**

## UNIVERSITY

# **UNIVERSITY EXAMINATIONS**

## **2010/2011 ACADEMIC YEAR**

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

**COURSE CODE: COMP 327** 

**COURSE TITLE: APPLIED NUMERICAL METHODS** 

STREAM: Y3S2

DAY: TUESDAY

TIME: 9.00 - 11.00 A.M.

**DATE:** 22/03/2011

#### **INSTRUCTIONS:**

- 1. This paper has two parts: section 'A' and section 'B'.
- 2. Section 'A' has ONE question which is COMPULSORY and carries 30 marks.
- 3. Attempt ANY TWO questions section B

#### **SECTION A (30 MARKS)**

**1.** Explain three applications of Numerical methods (3 marks) 2. Given the equations ax+by=c....(1)px+qy=r....(2) solve the equations and write an algorithm to solve the same (4 marks) 3. By obtaining a recurrence relation write an algorithm to find the sum of the series given by 4.  $\sin x = x - x^3/3! + x^5/5! - x^7/7! + \dots (-1)^n x^{2n-1}/2n-1! + \dots$ 5. Define the following with an example Truncation error i. ii. Round-off Error iii. Inherent Error (3 marks) 6. If a function f and its first n+1 derivatives are continuous on an interval containing a and x ,derive Taylor's series formulae (4 marks) 7. Given a polynomial

$$P(x)=a_0+a_1x+a_2x^2+....a_nx^n$$

write an algorithm to evaluate the polynomial

(5 marks)

8. Explain the important features of algorithms

(3 marks)

9. Subtract the following floating-point numbers **0.36143447X10**<sup>7</sup> and **0.36132346X10**<sup>7</sup> (2 marks)

#### **SECTION B**

Answer any two

Each question carries equal marks

## **QUESTION TWO.(20 marks)**

1. Obtain a second degree polynomial approximation to  $f(x) = (1+x)^{1/2}$ , Using Taylor series expansion about x=0. Use the expansion to approximate f(0.05) and find a bound truncation error.

(6 marks)

2. Given a function f(x) which is real and continuous in an interval [a,b] and f(a) and f(b) are opposite in sign, by satisfying bisection method criteria ,generate the bisection Method Algorithm.

(5 marks)

3. Using successive bisection method solve  $x^3-9x+1=0$  for the root lying between 2 and 3 in six (6) iterations

(6 marks)

**4.** Find the sum of **0.123X10**<sup>3</sup> and **0.456X10**<sup>2</sup> and write the result in three-digit mantissa form

(3 marks)

### **QUESTION THREE. (20 marks)**

1. Given to points x0 and x1 such that f(x0) and f(x1) are opposite in sign generate Regula falsi Algorithm for successive approximation

(5 marks)

2. Find a real root of  $x^3$ -2x-5=0 by the method of false position correct to decimal places between 2 and 3

(6 marks)

**3.** If x0 and x1 are two points such that  $f(x_0)$  and  $f(x_1)$  are opposite in sign generate the Regula Falsi Algorithm

(5 marks)

4. Derive Runge-Kutta 4<sup>th</sup> order Formula with respect to Euler's method and Taylor's series

(4 marks)

## **QUESTION FOUR (20 marks)**

**1.** Using Newton Raphson method and ignoring the higher terms generate the iterative formula for Newton Raphson method

(5 marks)

2. Find by Newtons method the real root of 3x=cosx+1 near 0.6, x is in Radians correct to three decimal places

(6 marks)

3. Perform four iterations of Newton-Raphson method to find the smallest positive root of the equation f(x)=x3-5x+1=0

(4 marks)

**4.** Given the values

| 5. x:5x               | 6. 5    | 7. 7    | 8. 11    | 9. 13    | 10. 17   |
|-----------------------|---------|---------|----------|----------|----------|
| 11. $f(x)$ :11 $f(x)$ | 12. 150 | 13. 392 | 14. 1452 | 15. 2366 | 16. 5202 |

Evaluate f(9) using Lagrange's formula

(5 marks)