

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF BRIDGING MATHEMATICS

COURSE CODE: BMATH 002

COURSE TITLE: BASIC ALGEBRA

STREAM: BRIDGING MATHEMATICS

DAY: THURSDAY

TIME: 2.00 - 4.00 P.M.

DATE: 29/07/2010

INSTRUCTIONS:

• Answer question **ONE** questions and any other three

PLEASE TURN OVER

QUESTION ONE

- I. Solve the following
 - a) $1 + \log_5 x = \log_5 12$
 - b) $\log_3 4 + \log_3 x + \log_3 6 \log_3 5 = \log_3 2$

c)
$$\log (3x - 4) - \log (3 - x) = 1$$
 (10 marks)

- II. Factorise each of the following
 - a) $2x^2 + 3x + 1$
 - b) $9x^2 + 12x + 4$

c)
$$1 - 8x + 16x^2$$
 (9 marks)

III. a) Derive the quadratic formula

$$X = -b \pm \sqrt{b^2 - 4ac}$$
2a (5 marks)

- b) Solve the following equation $x^2 + 4x + 4 = 0$ by
 - i) Completing square method
 - ii) Factorization (6 marks)

QUESTION TWO

- I. a) Expand the following expressions in descending order of x;
 - i) $(X Y)^7$
 - ii) $(X + 0.5)^4$
- b) Use binomial expansion to solve
 - i) $(1.02)^6$ to 4 s.f
 - ii) Expand $(1 + x)^9$ upto the term x^3 and use the expansion to estimate $(0.98)^9$

QUESTION THREE

- I. In the arithmetic series $1+4+7+10+\ldots$ find the sum of the first
 - a) 10 terms
 - b) 100 terms
- II. Use matrix method to solve the following pair of simultaneous equations

$$3a + 2b = 12$$

$$4a - b = 5$$

III. Draw the graph of $y = 2x^2 - 4x + 1$ and estimate the roots from your graph.

QUESTION FOUR

a) Solve the following simultaneous equations graphically

$$y = x^2 - 2x + 1$$
$$y = 5 - 2x$$

- b) A group of young men decided to raise sh. 480, 000 to start a business. Before actual payments was made four members pulled out and each of those remaining had to pay an additional sh. 20, 000. Determine the original number of members.
- c) i) Solve for x in 2^{x} x $4^{2x} = 16$

ii)
$$a^{3x} \div a^{x}$$

QUESTION FIVE

I. Find the unknown in

II. Find the value of x if the matrix below is a singular matrix

$$\begin{bmatrix} 2x - 1 & 1 \\ X^2 & 1 \end{bmatrix}$$

III. Given that
$$A = \begin{bmatrix} 3 - 2 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 - 2 \\ 3 & 7 \end{bmatrix}$

Find i) AB⁻¹

ii)
$$A + B^{-1}$$