KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE - UNIVERSITY MATHEMATICS

- COURSE CODE: PMATH 011
- COURSE TITLE: BASIC ALGEBRA
- STREAM: SEMESTER ONE
- DAY: WENESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 25/03/2009

INSTRUCTIONS:

Attempt **QUESTION ONE** and **ANY OTHER TWO** questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a)	Given a quadratic equation + + = 0 , derive the quadratic formula then sol	ve
	2 + 5 + 3 = 0	(8 mks)
(b)	(i) State the three laws of logarithms.	(3 mks)
	(ii) Use laws of logarithms to rewrite $\sqrt{\sin}$	(2 mks)
(c)	Solve for	
	(i) 4 – 1 = 63	
	(ii) $1 = 242$	
	(iii) — × 12(4) = 48	
	(iv) 5 + 5 = 208	(12 mks)
(d)	Find the equation of a line that is perpendicular to the line $y - 3 + 1 = 0$ and passe	s through
	the point $(0, 2)$	(2 mks)
(e)	Simplify + (+ $2 = 3$	(3 mks)

QUESTION TWO (20 MARKS)

(a)	In a geor	netrical progression the sum of the second and third terms is 6 and the sum	of the third				
	and fourt	h term is -12. Find the first term and common ratio.	(6 mks)				
(b)	(b) Given a sequence; $a, a + d, a + 2d, \dots, L$						
	Derive th	e sum of n terms given that the sequence is A.P.	(8 mks)				
(c)	(c) A ball is dropped from a certain height, first bounce takes one second and subsequent bounce						
	Take ² 3	of the time of the previous bounce. Find;					
	(i)	Total time for the first 4 bounces	(3 mks)				
	(ii)	Total time until bouncing stops	(3 mks)				
QU	ESTION	THREE (20 MARKS)					
(a)	a) Define the following terminologies						
	(i) Permutation (1 mks)						
	(ii) Combination (1 mks)						
(b)	b) In how many ways can 3 – Letter Word be made from 26 letters of alphabet. (3 mks)						

- (c) There are 3 boys and 4 girls at birthday party. In how many ways can a team of 5 pupils be formed so as to include at least one boy?(5 mks)
- (d) Use Binomial theorem to approximate values of
 - (i) **(1.005)** (ii) **(0.98)** (4 mks)
- (e) Use the concept of series to write the following decimals into fractions;
 - (i) 0.3 (3 mks)
 (ii) 0.45 (3 mks)

QUESTION FOUR (20 MARKS)

- (a) Given a linear equation 2 + 4 10 = 0 and passes through a point (4, 2), Find an equation parallel to that line.
 (3 mks)
- (c) Using the Inverse technique solve the following system of linear equations.

$$2 - 3 = -7$$

 $3 + = -5$ (6 mks)

- (d) What do you understand by the following terminologies
 - (i) Singular matrix
 - (ii) Zero matrix
 - (iii) Matrix (3 mks)

(4 mks)

		4	2	6
(e)	Find the determinant	2	8	1
		7	2	4

QUESTION FOUR (20 MARKS)

(a) Without using the calculator evaluate the following;

(i)	(100)	(1 mk)
(ii)	64	(1 mk)

(b) Solve for

(i)	3	= 1	(3 mks)
(ii)	5	+ 5 = 208	(3 mks)

(c) Evaluate

(i)	16 +	2 —	8	(3 m	ıks)
(ii)	0.001			(2 m	ıks)

(d) Evaluate

(\mathbf{i})	()!	(3 mks)
(1)	()!	(3 11183)