FOR THE CERTIFICATE OF PRE- UNIVERSITYMATHEMATICS

COURSE CODE: PMATH 011

COURSE TITLE: BASIC ALGEBRA
STREAM: SEMESTER ONE
DAY:
THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
03/12/2009

INSTRUCTIONS:

1. Answer Question ONE and ANY TWO Questions
2. Show your working clearly and neatly

QUESTION ONE (30 MARKS)

1. Solve for the equation $4 x^{2}-8 x+13=0$ using the completing the squares method
2. Given $\mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right] \quad, \mathbf{B}=\left[\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right]$

Find:
a) $\mathbf{A B}$
b) $\mathbf{A}+\mathbf{B}$
C) A^{-1}
3. Expand $(p+3)^{5}$
4. In January 1980 a man's salary was $\mathrm{K} £ 2520$ p.a, if his annual increment is $\mathrm{K} £ 108$. Find his salary in January 1986.
5. The sum of three terms of a G.P is 26.If the common ratio is 3 . Find the sum of the first 6 terms.
6. Solve for x in the following:-
a) $4^{2 x} \cdot 4^{6}=1$
b) $4^{4 x} \div 2^{2 X}=2^{4}$
c) $3^{2 x}=\frac{1}{3^{4-x}}$
d) $\frac{1}{64}=\frac{1}{36^{x}}$
(4 marks)
7. Without using tables find the value of
(i) $\log _{2} 64-\log _{2} 16$
(ii) $\underline{\log 18-\log 6}$
$\log 6-\log 2$
8. Solve the following inequality and express the solution set.

$$
\frac{2 x+3}{4}+6 \geq 2+\frac{4 x}{3}
$$

QUESTION TWO (20 MARKS)

a. A club has 9 members. In how many ways can a president, a vice-president and secretary be chosen from the members in this club
b. Expand $(2 x+3 y)^{5}$
(3 marks)
c. Solve the following quadratic equations
(i) $6 x^{2}+5 x-6=0$
(2 marks)
(ii) $\underline{1}+\underline{3}=2$
(2 marks)
d. In the arithmetic series $1+4+7+10+$ \qquad find the sum of the first fifty terms
e. Find the sum of the first 10 terms of $8+24+72+\ldots$ \qquad
f. .Given that $\log _{10} 5=0.6990 \& \log _{10} 6=0.7782$. find the following logarithms
(i) $\log _{10} 30$
(ii) $\log _{10} 6 \div \log _{10} 5$
(iii) $\log _{10} 5^{1 / 2}$

QUESTION THREE (20 MARKS)

a. Use the binomial expansion to evaluate (1.01) ${ }^{5}$ to 4 s.f.
b. Use matrix method to solve the following simultaneous equation

$$
\begin{align*}
& x-2 y=4 \\
& 2 x+y=3 \tag{3marks}
\end{align*}
$$

c. Given that $(m x+7)^{2}=n x^{2}+14 m x+p$. Where m, n and p are integers, find their values. (4 marks)
d. Simplify the following giving your answers as indices
(i) $a^{1 / 3} \cdot a^{7 / 3}$
(ii) $\left(2 a^{3} b^{4}\right)^{3 / 4}$
e) Find inverse of the following matrices
(i)

(ii)
$\left(\begin{array}{ll}x & x / 2 \\ y / 2 & y\end{array}\right)$
(2 marks)
f) Rewrite the following expressions as a single logarithm.
(i) $2 \log _{b} x+1 / 2 \log _{b} x+4$
(ii) $4 \log _{\mathrm{b}}(\mathrm{x}+2)-3 \log _{\mathrm{b}}(\mathrm{x}-5)$
g) Find the range of x if $-4 \leq 2 x-2 \leq 8$

QUESTION FOUR (20 MARKS)

a. Define a Quadratic equation
b. Find the numbers of different ways of placing 15 balls in a row given that 4 are red, 3 are yellow, 6 are black and 2 are blue
c. How many arrangements can be made of the letters in the word BWBWBWBWR
d. Find the inverse of the matrix $\mathrm{A}=\left(\begin{array}{ll}5 & 2 \\ 4 & 3\end{array}\right) \quad$ Hence or otherwise solve the simultaneous equation

$$
\begin{aligned}
& 5 x+2 y=8 \\
& 4 x+3 y=5
\end{aligned}
$$

e. The $2^{\text {nd }}$ term of an AP is 15 and the $5^{\text {th }}$ term is 21 . Find the common difference and the $1^{\text {st }}$ term. (4 marks)
f. Find the quadratic equation whose roots are 3, -2 . Answer the question in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ where a, b and c are intergers.
g) Use binomial expansion to write the $5^{\text {th }}$ and $12^{\text {th }}$ terms of the following expression $(x+2)^{18}$
(4 marks)

