KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE- UNIVERSITYMATHEMATICS

- COURSE CODE: PMATH 011
- COURSE TITLE: BASIC ALGEBRA
- STREAM: SEMESTER ONE
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 03/12/2009

INSTRUCTIONS:

- 1. Answer Question ONE and ANY TWO Questions
- 2. Show your working clearly and neatly

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

1. Solve for the equation $4x^2-8x+13=0$ using the completing the squares method (3 marks)

2. Given
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$
Find:
a) \mathbf{AB}
b) $\mathbf{A} + \mathbf{B}$
C) \mathbf{A}^{-1} (6 marks)

- 3. Expand (p+3)⁵ (2 marks)
 4. In January 1980 a man's salary was K£2520 p.a, if his annual increment is K£108. Find his salary in January 1986. (4 marks)
- 5. The sum of three terms of a G.P is 26. If the common ratio is 3. Find the sum of the first 6 terms. (3 marks)
- 6. Solve for x in the following:-

a) $4^{2x}.4^{6}=1$

b) $4^{4x} \div 2^{2x} = 2^4$ c) $3^{2x} = \frac{1}{3^{4 \cdot x}}$ d) $\frac{1}{64} = \frac{1}{36^x}$ (4 marks)

- 7. Without using tables find the value of

 (i) Log₂64 Log₂16
 (2 marks)

 (ii) Log 18 Log 6 Log 6 - Log 2
 (3 marks)

 8. Solve the following inequality and express the solution set.
 - $\underline{2x+3} + 6 \ge 2 + \underline{4x}$
 - 4 3 (3 marks)

QUESTION TWO (20 MARKS)

a. A club has 9 members. In how many ways can a president, a vice-president and secretary be	
chosen from the members in this club	(3 mark)
b. Expand $(2x + 3y)^5$	(3 marks)
c. Solve the following quadratic equations (i) $6x^2+5x-6=0$ (ii) $\frac{1}{1} + \frac{3}{2} = 2$ X+1 x-1	(2 marks) (2 marks)
d. In the arithmetic series 1+4+7+10+ find the sum of the first fifty terms	(2 marks)
e. Find the sum of the first 10 terms of 8+24+72+	(2 marks)
fGiven that $\text{Log}_{10}5 = 0.6990 \& \text{Log}_{10}6 = 0.7782$. find the following logarithms (i) $\text{Log}_{10} 30$ (ii) $\text{Log}_{10}6 \div \text{Log}_{10}5$ (iii) $\text{Log}_{-5}7^{2}$	(6 morto)
(iii) $\log_{10}5^{2}$	(6 marks)

QUESTION THREE (20 MARKS)

- a. Use the binomial expansion to evaluate $(1.01)^5$ to 4 s.f. (2 marks)
- b. Use matrix method to solve the following simultaneous equation

$$\begin{array}{l} x - 2y = 4 \\ 2x + y = 3 \end{array} \tag{3 marks}$$

c. Given that $(mx+7)^2 = nx^2 + 14mx + p$. Where m, n and p are integers, find their values. (4 marks)

d. Simplify the following giving your answers as indices (i) $a^{1/3}$. $a^{7/3}$

(ii)
$$(2a^{3}b^{4})^{3/4}$$
 (2 marks)

e) Find inverse of the following matrices

(i)
$$\begin{pmatrix} 1 & 3 \\ & -2 & 1 \end{pmatrix}$$
 (1 mark) (ii) $\begin{pmatrix} x & x/2 \\ & y \end{pmatrix}$ (2 marks)
y/2 y

f) Rewrite the following expressions as a single logarithm.

(i) $2 \operatorname{Log}_{b} x + \frac{1}{2} \operatorname{Log}_{b} x + 4$	(2 marks)
$(ii)4Log_b(x+2) - 3Log_b(x-5)$	(2 marks)
g) Find the range of x if $-4 \le 2x - 2 \le 8$	(2 marks)

QUESTION FOUR (20 MARKS)

a. Define a Quadratic eq	uation	(1 mark)

- b. Find the numbers of different ways of placing 15 balls in a row given that 4 are red, 3 are yellow, 6 are black and 2 are blue (3 marks)
- c. How many arrangements can be made of the letters in the word **BWBWBWBWR** (2 marks)

d. Find the inverse of the matrix $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$ Hence or otherwise solve the simultaneous equation

$$5x + 2y = 8$$

 $4x + 3y=5$ (3marks)

e. The 2nd term of an AP is 15 and the 5th term is 21. Find the common difference and the 1st term. (4 marks)

- f. Find the quadratic equation whose roots are 3, -2. Answer the question in the form $ax^2 + bx + c = 0$ where a, b and c are intergers. (3 marks)
- g) Use binomial expansion to write the 5th and 12th terms of the following expression $(x+2)^{18}$ (4 marks)