

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF PRE – UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 011

COURSE TITLE: BASIC ALGEBRA

STREAM: SEMESTER ONE

DAY: WEDNESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 24/03/2010

INSTRUCTIONS:

Attempt question **ONE** and any other **TWO** questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Given a quadratic equation $ax^2 + bx + c = 0$, by use of completing square method deduce the quadratic formula hence solve $x^2+5x+6=0$	
	(5 marks)
(b) In how many ways can 7 people be sitted at a round table.	(3marks)
(c) Solve the following simultaneous equations by the matrix method; $x - 2y = 1$	
4y + 2x = 10	(4 marks)
(d) In a geometrical progression the sum of the second and third terms is 6 and sum of the third and fourth terms is -12 . Find the first term and common ratio.(5 marks)	
(e) (i) In how many distinct ways can the letters of the word MISSISSIE	_
(ii) Evaluate; $2^{x} + 2^{x+2} = 10$	(2 marks) (2 marks)
(f) Use the Binomial theorem to find the approximate value of $(0.98)^5$	(4 1)
(g) Calculate the sum of the series; $1, -\frac{3}{2}, -4, -\cdots -49$	(4 marks) (5 marks)
QUESTION TWO (20 MARKS)	
(a) Solve the following equations	
(i) $4^{x} - 2^{x+1} = 8$ (ii) $27^{\left(\frac{3}{4} - x\right)} = 81^{\left(x - \frac{1}{4}\right)}$	(3 marks)
(ii) $27^{(\frac{1}{4}-x)} = 81^{(x-\frac{1}{4})}$ (iii) $log(x+3) + log(x+2) = log 6$	(5 marks) (3 marks)
(III) log(x+3) + log(x+2) = log 0	(3 mai ks)
(b) Solve the following equations (i) $x^4 - 20x^2 + 64 = 0$	(2 montes)
(i) $x^4 - 20x^2 + 64 = 0$ (ii) $2x + \frac{1}{x} = 3$	(3 marks) (3 marks)
(iii) $2x + \frac{1}{x} = 3$ (iii) $4x^4 + 15x^2 = 4$	(3 marks)

QUESTION THREE (20MARKS)

(a) Given that $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

Find

- (i) 5A + 2B (2marks)
- (ii) A 2B (2marks)
- $(iii) A \times B$ (2marks)
- (iv) A^{-1} (3marks)
- (b) Given that $P = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} 4 & 5 \\ 1 & -1 \end{bmatrix}$ Find S given PS = Q. (4marks)
- (c) The 3rd, 5th and 8th terms of an A.P are the consecutive terms of a G.P. Given that the first term of the A.P is 8 determine the common difference d and the common ratio r. (5marks)
- (d) How many distinct arrangements are there of the letters in the word RELATION (2 marks)

QUESTION FOUR (20 MARKS)

- (a) Derive the formula of A.P and hence find the sum of the following A.P x + 2x + - - + nx up to 14 terms. (8 marks)
- (b) Derive the formula of the sum to infinity and hence find the sum of $\{X_n\} = 0.45 \dots$

(7 marks)

- (c) A ball is dropped from a certain height and the first bounce takes $\frac{2}{3}$ of the previous bounce. Find;
 - (i) Total time for the first 4 bounces (2 marks)
 - (ii) Total time until bouncing stops (3 marks)

QUESTION FIVE (20 MARKS)

- (a) (i) Find the value of x for which $\begin{pmatrix} x & 2 \\ 5 & x-3 \end{pmatrix}$ has no inverse. (3 marks)
 - (ii) In how many ways can a committee of 4 be choosen from 5 boys and 4 girls if the committee must have at least one girl? (6 marks)

- (b) A group of students are on a tour. The total fare is Ksh. 120 and this is shared equally among the students. If two more students join the tour, each will pay shs. 2 less. Find the original number of students in the group. (6 marks)
- (c) Given $A = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 2 & 6 \end{bmatrix}$

Find
$$C(A^{-1} B)$$
 (5 marks)