KABARAK UNIVERSITY

(ELAND COLLEGE)

UNIVERSITY EXAMINATIONS

BRIDGING CERTIFICATE COURSE IN MATHEMATICS

AUGUST 2008 EXAMINATIONS

- COURSE CODE: BMATH 002
- COURSE TITLE: BASIC ALGEBRA
- STREAM: BRIDGING
- DAY:
- DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- 1. Answer all questions in section A and any four questions in section B.
- 2. Show your working clearly and neatly.

SECTION A (30MKS)

Answer all questions

- 1. a) Solve the equation $9^{(2x-1/4)} \times 27^{(x-\frac{1}{2})} = 81^{\frac{1}{2}(3x+1)}$ (3mks) b) Simplify $\log_{10} 120 + \frac{1}{3}\log_{10} 27 - 2\log_{10} 6.$ (3mks)
- 2. a) Factorize completely $18x^2 - 50y^2$ (2mks) b) Factorize m² - n² hence use it to evaluate: i) 998² - 2² ii) 8.87² - 1.13² (4mks)
- 3. a) Determine the range of values of x that satisfy the inequality:
 - $\frac{14}{3} < \frac{5x}{6} + \frac{1}{2} \ge x \frac{5}{3}$ (3mks) b) Evaluate $\frac{13!}{9!5!} + \frac{13!}{10!41!}$ (2mks)
- 4. a) Expand $(1 + \frac{1}{5}x)^6$ and hence use your expansion to evaluate $(1.02)^6$
- to 4d.p (4mks) b) Find the sum of the following G.P
 - $1 + \frac{1}{2} + \frac{1}{4} + \dots$ 6 terms. (3mks)
- 5. a) Given that $x = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$. Find xy + x (3mks)
 - b) Express in the simplest possible form $\frac{4+x}{3-x} + \frac{2+x}{3+x}$ (3mks)

SECTION B (40MKS)

Answer any four questions

6. a) Simplify completely

$$\frac{A^{3y+1}}{A^{2y+2} \sqrt[2]{A^{2}} A^{3y-3}}$$
(3mks)

b) Given that $log_{10}m = x + y$ and $log_{10}n = x - y$, express, in terms of x and y, the value of $log_{10}(m^2n)$ (3mks)

c) Express the following in an algebraic sum of logarithms:

7. a) Solve the equation $2x^2 + 5x - 1 = 0$, giving your answer correct to 2 decimal places. (3mks)

b) Factorize completely $5x^2 - 2x - 3$. Hence or otherwise solve the equation $5x^2 - 2x - 3 = 0$. (3mks)

c) If a and b are the roots of the equation $x^2 + 2x - 3 = 0$, find the equation whose roots are 1 and 1. (4mks) $\frac{(4mks)}{a^2}$ 5^2

8. a) Use matrix method to solve simultaneous equations.

$$3x + y = 7$$

$$2x - 3y = 1$$
 (4mks)
b) Let A = $\begin{pmatrix} x & 1-x \\ x+2 & -x \end{pmatrix}$ and B = $\begin{pmatrix} x & x-2 \\ \frac{x}{2} & 2x \end{pmatrix}$

- i) Determine the value of x given that A is a singular matrix. (3mks)
- ii) If C = A + B, find the inverse of the matrix C. (3mks)
- 9. a) Simplify $\frac{(n+1)!}{n!} + \frac{n!}{(n-1)!}$ (3mks)

b) In how many ways can a committee of three girls and four boys be formed from a youth group of six girls and seven boys? (3mks)

- c) How many arrangements can be made from the letters of the words?
 - i) EXPRESSIONS (2mks)
 - i) SIMPLIFICATION (2mks)

10. a) The first three terms of an arithmetic progression are: x + 2y,

4x and 7x – 2y. Find the sum of the first ten terms. (4mks) b) Write down the term independent of x in the expansion of

$$\begin{pmatrix} 4x + 1 \\ \hline 2X \end{pmatrix}^8$$
 (3mks)

c) Solve the inequalities:

- i) $\frac{1}{3}x + 2 \le 5$ (1mk)
- ii) 2x + 3 > 5x 3 > -8 (2mks)