KABARAK

UNIVERSITY

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

CERTIFICATE IN BRIDGING MATHEMATHICS

COURSE CODE:	BMATH 003
COURSE TITLE:	BASIC CALCULUS
STREAM:	BRIDGING
DAY:	WEDNESDAY
TIME:	9.00- 11.00 AM
DATE:	01/09/2009

INSTRUCTIONS: Attempt Question ONE and Any other TWO Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Define the following terms:

i)	Calculus		
ii)	A function		
iii)	Stationary points		
iv)	Limit		
v)	Differentiation	(5 Marks)	
b) Find the grad	lient of the curve $f(x) = x^2 + 4$ using the first principles	(5 Marks)	
c) Evaluate the limit $\lim x^5 + 2x - 5$			
	$x \rightarrow 2$ $2x - x^2$	(5 Marks)	
d) Differentiate the following functions:			
i)	$f(x) = 4x^3 - 4x^{-2} + x - 1$		
		(3 Marks)	
ii)	$f(x) = (x^3 + 2x) (8x^2 + 13)$	(3 Marks)	
iii)	$f(x) = x^3 - 3x^4$		
	$x+4x^3$	(3 Marks)	

e) Evaluate
$$\int (12x) dx$$
 for x between -2 and 4 (4 Marks)
- 2

f) Given that $f(x) = x^2$ and g(x) = 2x - 3, find fg(x) (2 Marks)

QUESTION TWO (20 MARKS)

Given that $f(x) = x^4 + x^3 + 2$, find:

- i) f(0) and f(2) (2 Marks)
- ii) the equation of the tangent and normal to the curve at x = 1 (6 Marks)
- iii) Sketch the curve $y = x^2 3x + 2$ (6Marks)
- b) Investigate the stationary points of the curve defined as $f(x) = x^3 2x^2 + x$ (6 Marks)

QUESTION THREE (20 MARKS)

a) The motion of a particle is described by the equation $s = \frac{1}{2}t^2 + \frac{1}{3}t^3 + 40$ where s represents the distance traveled by the particle after time t. Find:

i)	The expression for velocity and acceleration at any time t	(4 Marks)
ii)	The average acceleration between $t = 1$ and $t = 4$	(4 Marks)
iii)	The time when particle is not accelerating	(2 Marks)

b) A body in motion is known to be accelerating according to the equation $a = 4t^3 - 3t^2 - 6t$, where a is the acceleration at a time t.

i) Find the equation governing this body's velocity given that velocity is known to be 12 m/s when the time is 2 seconds (5 Marks)

ii) Find the equation governing this body's distance given that the distance is known to be 2 m when the time is 0 seconds (5 Marks)

QUESTION FOUR (20 MARKS)

- a) Differentiate the following functions and simplify as far as possible
 - i) $f(x) = 3x + x^2 (4x^3 + 1)$ (3 Marks)

ii)
$$f(x) = 3x^4 / 2x + 4$$
 (3 Marks)

iv)
$$f(x) = (3x + x^2)^2$$
 (3 Marks)

b) i) If $dy/dx = 20x^3 - 12x^2 + 5$ for a particular curve, and its known that y = 40 when x = 2. Determine y in terms of x

(5 Marks)

ii) Evaluate
$$\int_{-\infty}^{4} (x^3 - 3x^2) \text{ from -3 to 4}$$
(5 Marks)

c) find the derivative of y' (x) implicitly given that

i)
$$x^2 y^2 + 3y = 4x$$
 (3 Marks)

ii)
$$3xy^3 - 4x = 10y$$
 (3 Marks)

QUESTION FIVE (20 MARKS)

a) The length of a rectangular block of is twice the width, and the total surface area is 108 cm^2 . Show that if the width of the block is x cm, then the volume will be given by $\frac{4}{3} \times (27-x^2) \text{ cm}^2$. (6 Marks)

b) Find the area bounded by the curve $f(x) = x^2-4$, the x-axis and the line x = 4 (5 Marks)

c) A particle moves such that its displacement s meters after t seconds is given by $s = 3t^3 + 4t^2$. Find the equation governing it velocity and acceleration hence find the velocity and acceleration at t = 2 seconds (4 Marks)

d) Given the functions below find all discontinuities of f(x) and define a new function that removes the discontinuity

i)
$$f(x) = x-1$$

 x^2-1
(2 Marks)
ii) $f(x) = \begin{cases} 2x & \text{if } x < 1 \\ x^2 & \text{if } x \ge 1 \end{cases}$
(3 Marks)