

CERTIFICATE IN BRIDGING MATHEMATHICS

COURSE CODE: BMATH 003
COURSE TITLE: BASIC CALCULUS
STREAM: BRIDGING
DAY: WEDNESDAY
TIME:
9.00-11.00 AM

DATE:
01/09/2009

INSTRUCTIONS:
Attempt Question ONE and Any other TWO Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Define the following terms:
i) Calculus
ii) A function
iii) Stationary points
iv) Limit
v) Differentiation
b) Find the gradient of the curve $f(x)=x^{2}+4$ using the first principles
c) Evaluate the limit

$$
\begin{equation*}
\operatorname{Lim}_{x \rightarrow 2} \frac{x^{5}+2 x-5}{2 x-x^{2}} \tag{5Marks}
\end{equation*}
$$

d) Differentiate the following functions:
i) $\quad f(x)=4 x^{3}-4 x^{-2}+x-1$
ii) $\quad f(x)=\left(x^{3}+2 x\right)\left(8 x^{2}+13\right)$
iii) $f(x)=x^{3}-3 x^{4}$ $x+4 x^{3}$
e) Evaluate $\int^{4}(12 x) d x$ for x between -2 and 4 - 2
f) Given that $f(x)=x^{2}$ and $g(x)=2 x-3$, find $f g(x)$

OUESTION TWO (20 MARKS)

Given that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}^{3}+2$, find:
i) $\quad f(0)$ and $f(2)$
(2 Marks)
ii) the equation of the tangent and normal to the curve at $x=1$
iii) Sketch the curve $y=x^{2}-3 x+2$
b) Investigate the stationary points of the curve defined as $f(x)=x^{3}-2 x^{2}+x$

QUESTION THREE (20 MARKS)

a) The motion of a particle is described by the equation $s=1 / 2 t^{2}+{ }^{1} / 3 t^{3}+40$ where s represents the distance traveled by the particle after time t. Find:
i) The expression for velocity and acceleration at any time t
(4 Marks)
ii) The average acceleration between $t=1$ and $t=4$
iii) The time when particle is not accelerating
b) A body in motion is known to be accelerating according to the equation $a=4 t^{3}-3 t^{2}-6 t$, where a is the acceleration at a time t.
i) Find the equation governing this body's velocity given that velocity is known to be $12 \mathrm{~m} / \mathrm{s}$ when the time is 2 seconds
(5 Marks)
ii) Find the equation governing this body's distance given that the distance is known to be 2 m when the time is 0 seconds

QUESTION FOUR (20 MARKS)

a) Differentiate the following functions and simplify as far as possible
i) $\left.\quad f(x)=3 x+x^{2}\right)\left(4 x^{3}+1\right)$
ii) $\quad f(x)=3 x^{4} / 2 x+4$
iv) $\quad \mathrm{f}(\mathrm{x})=\left(3 \mathrm{x}+\mathrm{x}^{2}\right)^{2}$
b) i) If dy/dx $=20 x^{3}-12 x^{2}+5$ for a particular curve, and its known that $y=40$ when $x=$ 2. Determine y in terms of x
ii) Evaluate $\int^{4}\left(x^{3}-3 x^{2}\right)$ from -3 to 4
c) find the derivative of $y^{\prime}(x)$ implicitly given that
i) $x^{2} y^{2}+3 y=4 x$
(3 Marks)
ii) $3 x y^{3}-4 x=10 y$
(3 Marks)

OUESTION FIVE (20 MARKS)

a) The length of a rectangular block of is twice the width, and the total surface area is $108 \mathrm{~cm}^{2}$. Show that if the width of the block is xcm , then the volume will be given by ${ }^{4} / 3 \mathrm{x}\left(27-\mathrm{x}^{2}\right) \mathrm{cm}^{2}$. (6 Marks)
b) Find the area bounded by the curve $f(x)=x^{2}-4$, the x-axis and the line $x=4$
c) A particle moves such that its displacement s meters after t seconds is given by $s=3 t^{3}+4 t^{2}$. Find the equation governing it velocity and acceleration hence find the velocity and acceleration at $t=2$ seconds
d) Given the functions below find all discontinuities of $f(x)$ and define a new function that removes the discontinuity
i) $f(x)=x-1$

$$
\begin{equation*}
x^{2}-1 \tag{2Marks}
\end{equation*}
$$

ii) $f(x)= \begin{cases}2 x & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}$

