KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

BRIDGING CERTIFICATE COURSE IN MATHEMATICS

COURSE CODE: BMATH003

- COURSE TITLE: BASIC CALCULUS
- STREAM: BRIDGING
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 28/04/2009

INSTRUCTIONS:

Attempt Question **ONE** and any **OTHER** two questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- a) What do you understand by the following terminologies;
 - i) a function
 - ii)` a limit
 - iii) a derivative
- b) Given that; $f(x) = 2x^2-4x+2$ and g(x) = x-1, find:

ii) $(f \cdot g)(x)$

iii)
$$\left(\frac{f}{g}\right)(x)$$

(8 marks)

(6mks)

c) Find the following limits if they exist:

i)
$$\lim_{x \to 3} \frac{x^2 + 7x + 10}{x^2 + 4x + 4}$$
 (2marks)
iii) $\lim_{x \to 4} \frac{\sqrt{x - 2}}{x - 4}$ (2marks)

d) Using the first principle method find dy/dx of the following functions

i) y = 3x + 2 (2mks)

ii)
$$f(x) = 5x^2 - 4x + 4$$
 (3marks)

e) Verify the following limit

$$\lim_{x \to 2} x^2 + 2x + 2 = 10$$
 (4marks)

f) Find
$$\frac{dy}{dx}$$
 given $y = (3x^2 + 6x + 2)^{-11}$ (3marks)

QUESTION TWO (20MARKS)

a) Find the $\frac{dy}{dx}$ of the following functions:	
i) $y = \frac{6}{x^4} + \frac{3}{x^2} - 2x + 1$	
ii) $y = (x^2 - 1) (4x - 1)^{10}$	
iii) $y = \frac{x^2 - 6x + 2}{(x+4)^2}$	
iv) $y = u^4$ and $u = 2x^2 - 1$	(8marks)

b) Find the local extrema on the curve described by the equations below

i)
$$y = 2x^{3} - 6x + 3$$
 (4marks)
ii) $y = 5x^{3} - 3x^{5}$ (4marks)

c) Differentiate
$$f(x) = y^2 - x^3$$
 (4marks)

QUESTION THREE (20MKS)

a)	The distance, in meters, a particle moves in a given period of time (t) is given by:	
	$S(t) = 2t - 3t^2 - 2t^3$	
	i) Write an expression that gives the velocity of the particle at any time t.	
		(2 marks)
	ii) Write an expression that gives the acceleration of the particle at any time t.	
		(2 marks)
	iii) What is the velocity and acceleration at $t = 3$ secs.?	(2 marks)

b) Find the following integrals:

i)
$$\int (4x^2 + 4x - 1)dx \qquad (2marks)$$

ii)
$$\int_0^4 (x+1)dx$$
 (2marks)

Then b) Find the derivatives of the following functions using the first principal technique .

i)
$$y = \frac{1}{x^2}$$

ii)
$$y = \frac{1}{\sqrt{1+x}}$$
 (6 marks)

c) Find the tangent and normal equation to the curve $x^2 - y^2 = 7$ (4marks) at a point (4,3)

QUESTION FOUR (20 MARKS)

- a) Given $f(x) = x^3 3x^2 4x$ and g(x) = x-1 find $\frac{f(x)}{g(x)}$ (3marks)
- b) Using the definition of limits verify the following limits

i)
$$\lim_{x \to 3} (5x - 3) = 12$$
 (3marks)

ii)
$$\lim_{x \to 0} x^7 = 0$$
 (3marks)

- c) Given $f(x) = \sqrt{x}$ and g(x) = x + 2 find (i) fog (ii) gof (iii) fog
 (6marks)
- d) Derive and find gradients at apoint specified
 - $f(x) = (6x^3 + 10)^9$ at (0,3) (2marks)
- e) Discuss the continuity the following function

$$f(x) = \begin{cases} x^2 + 2, if \dots x < 2\\ 5, \dots, if \dots x = 2\\ x^2 + 6, \dots if, \dots x > 2 \end{cases}$$
(3marks)

QUESTION FIVE (20 MARKS)

a) Differentiate

i.
$$y = \frac{(2x^2 + 3x + 2)^2}{x + 3}$$
 (3 marks)

ii.
$$y = \sqrt{x^2 + 2x}$$
 (3 marks)

iii.
$$y = (x^2 + 3x + 4)(x + 6)^5$$
 (4 marks)

- b) Find the equation of the curve given the gradient is 3x-2 at a point (1,2) (4marks)
- c) Let the function $y = 2x^3 + 2x + 4$, find the gradient of the curve at a point (1, 6).

(2 marks)

d) Given the curve $y = x^2 - 4$, find the area under the curve bounded by the curve and x-axis. (4 marks)