

UNIVERSITY EXAMINATIONS

BRIDGING CERTIFICATE COURSE IN MATHEMATICS
COURSE CODE: BMATH 003
COURSE TITLE: BASIC CALCULUS
STREAM: BRIDGING
DAY: TUESDAY
DATE: 25/08/2009TIME:9:00-11.00 A.M.

INSTRUCTIONS

Attempt question ONE and any other TWO questions.
PLEASE TURN OVER

SECTION A

QUESTION ONE(30marks)

a) What do you understand by the following terminologies;
i) a normal and tangent equations
ii)'a function
iii) local extrema
b) $f(x)=2 x^{2}+x+1$ and $g(x)=3 x+2$, find
i) $f(x)+g(x)$
ii) $f(x)-g(x)$
iii) $f(x) \cdot g(x)$
iv) $f(x) / g(x)$
(2marks)
c) Using the first principle method, differentiate
i. $\quad Y=x^{2}+3 x-5$
(3marks)
ii. $\quad \mathrm{F}(\mathrm{x})=\sqrt{\mathrm{x}}$
(3marks)
d) Differentiate the following
i. $Y=x^{2}+2 x^{2}-x+6 \quad$ (1marks)
ii. $h(x)=\left(2 x^{3}+3\right)\left(x^{4}+1\right) \quad$ (2marks)
iii. $y=x^{2}+1 / x^{2}-1$
(2marks)
iv. $y=\left(x^{2}+1\right)^{6}$
(2marks)
e) Evaluate the limits
i. $\quad \lim _{x \rightarrow 2} x^{2}-25 / x-5$
(2marks)
ii. $\quad \lim _{x \rightarrow 1} x^{2}+\mathrm{x} / \mathrm{x}^{2}-1$
(2marks)

QUESTION TWO (20MARKS)

a) Given $f(x)=2 x^{2}+1$ and $g(x)=x+1$, find;
i. $\operatorname{fog}(\mathrm{x}) \quad$ (2marks)
ii. $\quad f(2)$
(2marks)
iii. $\quad \mathrm{ff}(2)$
(2marks)
iv. $\operatorname{gof}(\mathrm{x})$
(2marks)
v. What is the relationship between (i) and (iv) evaluated above?
(1mark)
b) Verify the following limit

$$
\operatorname{Lim}_{x \rightarrow 1} 5 x-3=2
$$

c) Differentiate;
i. $\quad \mathrm{y}=\left(\mathrm{x}^{2}+2 \mathrm{x}+10\right)^{10}$
(2marks)
ii. $\quad \mathrm{y}=\left(3 \mathrm{x}^{2}+10\right)^{3}(2 \mathrm{x}+4)$
(3marks)
d) Find the area bounded by the curve $y=3 x^{2}+14 x+15$, the x-axis and the ordinates at $x=-1$ and $\mathrm{x}=2$
(3marks)

QUESTION THREE (20MARKS)

a) Integrate the following
i. $\quad \int x^{6} d x$
(2marks)
ii. $\quad \int(5 x+4) d x$
(2marks)
iii. $\quad \int 2 \mathrm{dx}$
(2marks)
iv. $\int 6 / x d x$
(2marks)
b) Find the max and min values of

$$
y=x^{3}-6 x^{2}+9 x+2
$$

(5marks)
c) Find the equation of the tangent and normal to the curve $y=x^{3}-2 x^{2}+3 x-1$ at the point $(2,5) \quad(4$ marks)
d) A rectangular storage container with an open top has a volume of $10 \mathrm{~m}^{3}$ and the rectangular base is twice its width. Material of the base cost is 10ksh per sq.metres and the material of the side cost 6 ksh per metre.

Express the cost of the material as a function of the width of the base

QUESTIION FOUR (20MARKS)

a) Find the following integrals:
i) $\int\left(2 x^{2}+2 x-1\right) d x$
ii) $\quad \int_{0}^{4}(2 x+1) d x$
b) Find the derivatives of the following functions using the first principal technique .
i) $y=\frac{1}{x^{2}}$
ii) $y=5 x+3$
(8 marks)
c) Find the tangent and normal equation to the curve $x^{2}-y^{2}=7$
(4mrks) at a point $(4,3)$.
d) Find the area enclosed by $y=5+4 x-x^{2}$,the x-axis and the ordinates 1 and $x=4$

QUESTION FIVE (20MARKS)

a) The total area of the surface of a solid cylinder is 132 cm 2 .if the height of the cylinder is hcm and its radius is rcm , show that $\mathrm{h}=\underline{21}-\mathrm{r}$
r.Hence find the volume of the cylinder.
b) a curve passes through(2,3) and its gradient function is $3 x$-d.find its equation(2 marks)
c) State the ε-d definition of a limit L of a function $f(x)$ as x tends to a point $x=$ a and use it to prove that $\lim _{x \rightarrow 2}(3 x+1=7)$ (5marks)
d)A ball was thrown upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$.find i) acceleration and velocity statements
ii) maximum it can attain

