KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE CERTIFICATE OF PRE-UNIVERSITY MATHEMATICS COURSE CODE: PMATH 022

COURSE TITLE: BASIC CALCULUS

- STREAM: SEMESTER TWO
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 07/12/2010

INSTRUCTIONS:

- 1. Attempt question **ONE** and any other **TWO** questions.
- 2. Show your **workings** clearly.

PLEASE TURN OVER

QUESTION ONE (30MKS)

- (a) Define function and give an illustration of a function operating like a machine so as to give an image (y) (5mks)
- (b) Using the first principle technique find the derivatives of each of the following at a specified point.

(i)
$$y = 4x + 7$$
at(10,4)(4mks)(ii) $y = 2x^2 + x + 1$ at(2,6)(4mks)(iii) $y = \frac{1}{x^2}$ at(-2,3)(4mks)

- (c) What do you understand by the following terms?
 - (i)Real valued function(2mks)(ii)Gradient function(2mks)(iii)Normal and tangent functions(2mks)

(d) (i) Evaluate
$$\int_{-1}^{1} (2x^2 + 4x + 1) dx$$
 (3mks)

(ii)
$$\frac{\frac{d}{dx}}{\sqrt{x^2 + 4x + 7}}$$
 (2mks)

(iii) Evaluate $\lim_{x \to 0} \frac{x^2 + x}{x}$ (2mks)

(3 mks)

QUESTION TWO

a) Define a function and give an illustration of function operating like a machine.

b) Using the definition of a limit, show that:

i) $\lim_{x \to 10} (3x+5) = 35$ (4 mks)

ii)
$$\lim_{x \to 0} x^9 = 0$$
 (4 mks)

c) Differentiate:

i)
$$y = (3x-1)(x^2-4)$$
 (3 mks)

ii)
$$y = \frac{2x+3}{2x-3}$$
 (3 mks)

d) Evaluate
$$\int_{-1}^{2} (x^2 + 4x) dx$$
 (3 mks)

QUESTION THREE (20 MARKS)

- a) What do you understand by the following terms:
 - i) continuous function (2 mks)
 - ii) "hole" (2 mks)
 - iii) limit of a function (2 mks)
- b) Describe the following function:

$$f(x) = \begin{cases} x^{3} + 2 & \text{if } x < 2\\ x^{2} + 6 & \text{if } x > 2\\ 10 & \text{if } x = 2\\ \frac{1}{x^{2} - 2} & \text{if } x < 2 \end{cases}$$
(3 mks)

c) Differentiate and hence find the gradient at a specific point indicated.

i)
$$y = (2x^2 + x + 1)(x^2 + 2)$$
 at (0,1) (4 mks)

ii)
$$y = (3x^2 + 4)^{10}(x + 4)$$
 at (0,16) (4 mks)

iii)
$$y = \frac{\sqrt{x^2 + 6x + 1}}{x + 1}$$
 at (1, -3) (3 mks)

QUESTION FOUR (20 MARKS)

a) Find the tangent and normal line to the curve $f(x)=2x^3+2x+4$ at a point (1,2)					
			(5 mks)		
b)	b) An object moves along a line in such a way that its position at time t is $S(t)=t^3-6t^2+9t+5$				
	i.	Find the acceleration and velocity statement and hence evaluate	acceleration and		
		velocity at time t=2 seconds.	(4 mks)		
	ii.	When is the object stationary?	(3 mks)		
c)	c) Given $y=2x^2-6x$,				
	i.	Find the critical points.	(2 mks)		
	ii.	Using the second derivative method, find the local extrema.	(3 mks)		
d)	$\int_{-1}^{3} (3x^2 +$	(x+1)dx	(3 mks)		

QUESTION FIVE (20 MARKS)

(a)	A real valued function is defined by $f(t) = 2(3t-1)+4$ evaluate the value of the function at					
	the <u>input</u> of the following values.					
	(i)	0	(2mks)			
	(ii)	f(1)	(2mks)			
	(iii)	x+2	(3mks)			
	(iv)	ff(1)	(3mks)			
(b)	Given $f(x) = x^3$, $g(x) = x + 1$, $h(x) = 2$					
	Evaluate;					
	(i)	f(x) 3g(x)	(2mks)			
	(ii)	f(x) + g(x)	(2mks)			
	(iii)	$\frac{f(x)}{g(x)}$	(2mks)			
	(iv)	fog	(2mks)			
	(v)	fogoh	(2mks)			