COURSE TITLE: BASIC CALCULUS

STREAM:
 SEMESTER TWO

DAY:
TIME:
2.00-4.00 P.M.

DATE:
07/12/2010

INSTRUCTIONS:

1. Attempt question ONE and any other TWO questions.
2. Show your workings clearly.

QUESTION ONE (30MKS)

(a) Define function and give an illustration of a function operating like a machine so as to give an image (y)
(b) Using the first principle technique find the derivatives of each of the following at a specified point.
(i) $y=4 x+7 \quad$ at $(10,4)$
(ii) $y=2 x^{2}+x+1 \quad$ at $\quad(2,6)$ (4mks)
(iii) $y=\frac{1}{x^{2}} \quad$ at $\quad(-2,3)$
(c) What do you understand by the following terms?
(i) Real valued function
(ii) Gradient function
(iii) Normal and tangent functions
(d) (i) Evaluate $\int_{-1}^{1}\left(2 x^{2}+4 x+1\right) d x$
(3mks)
(ii) $\sqrt[\frac{d}{d x}]{\left(x^{2}+4 x+7\right)}$
(2mks)
(iii) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$
(2mks)

QUESTION TWO

a) Define a function and give an illustration of function operating like a machine.
b) Using the definition of a limit, show that:
i) $\quad \operatorname{Lim}_{x \rightarrow 10}(3 x+5)=35$
ii) $\quad \operatorname{Lim}_{x \rightarrow 0} x^{9}=0$
c) Differentiate:
i) $y=(3 x-1)\left(x^{2}-4\right)$
ii) $y=\frac{2 x+3}{2 x-3}$
d) Evaluate $\int_{-1}^{2}\left(x^{2}+4 x\right) d x$

QUESTION THREE (20 MARKS)

a) What do you understand by the following terms:
i) continuous function

$$
(2 \mathrm{mks})
$$

ii) "hole" (2 mks)
iii) limit of a function (2 mks)
b) Describe the following function:

$$
f(x)=\left\{\begin{array}{ccc}
x^{3}+2 & \text { if } & x<2 \\
x^{2}+6 & \text { if } & x>2 \\
10 & \text { if } & x=2 \\
\frac{1}{x^{2}-2} & \text { if } & x<2
\end{array}\right.
$$

(3 mks)
c) Differentiate and hence find the gradient at a specific point indicated.
i) $y=\left(2 x^{2}+x+1\right)\left(x^{2}+2\right)$ at $(0,1)$ (4 mks)
ii) $\quad y=\left(3 x^{2}+4\right)^{10}(x+4)$ at $(0,16)$ (4 mks)
iii) $y=\frac{\sqrt{x^{2}+6 x+1}}{x+1}$ at $(1,-3)$

QUESTION FOUR (20 MARKS)

a) Find the tangent and normal line to the curve $f(x)=2 x^{3}+2 x+4$ at a point $(1,2)$
(5 mks)
b) An object moves along a line in such a way that its position at time t is $S(t)=t^{3}-6 t^{2}+9 t+5$
i. Find the acceleration and velocity statement and hence evaluate acceleration and velocity at time $\mathrm{t}=2$ seconds.
(4 mks)
ii. When is the object stationary?
c) Given $y=2 x^{2}-6 x$,
i. Find the critical points.
(2 mks)
ii. Using the second derivative method, find the local extrema.
d) $\int_{-1}^{3}\left(3 x^{2}+x+1\right) d x$

QUESTION FIVE (20 MARKS)

(a) A real valued function is defined by $f(t)=2(3 t-1)+4$ evaluate the value of the function at the input of the following values.
(i) O
(ii) $\mathrm{f}(1)$
(iii) $\mathrm{x}+2$
(iv) $\mathrm{ff}(1)$
(2mks)
(2mks)
(3mks)
(3mks)
(b) Given $\mathrm{f}(\mathrm{x})=x^{3}, \mathrm{~g}(\mathrm{x})=\mathrm{x}+1, \mathrm{~h}(\mathrm{x})=2$

Evaluate;
(i) $f(x) 3 g(x)$
(2mks)
(ii) $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
(2mks)
(2mks)
(iii) $\frac{f(x)}{g(x)}$
(iv) fog
(2mks)
(v) fogoh
(2mks)

