FOR THE CERTIFICATE OF PRE - UNIVERSITY MATHEMATICS

COURSE CODE: BMATH 003
COURSE TITLE: BASIC CALCULUS

STREAM: BRIDGING

DAY:
THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
29/04/2010

INSTRUCTIONS:
Attempt Question One and any other TWO questions.

QUESTION ONE - COMPULSORY (30 MARKS)

a) Given $f(x)=x^{2}+2 x+1$; evaluate f at the input values
i. 2
(2 mks)
ii. $\mathrm{x}+1$
iii. $\mathrm{fff}(0)$
(3 mks)
(3 mks)
b) Let $f(x)=x^{3}+2 x^{2}-4 x$ and $g(x)=x-2$. Find:
i. $2 f(x)+3 g(x)$
(3 mks)
ii. $\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
iii. $\frac{f(x)}{g(x)}$
c) Using the first principle method differentiate the following functions:
i. $y=4 x+10$
(3 mks)
ii. $y=2 x^{2}+5 x+3$
iii. $\mathrm{y}=\frac{1}{x^{2}}$
iv. $y=6$
(3 mks)
(3 mks)
d) Evaluate the following limit: $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$

QUESTION TWO (20 MARKS)

a) Define limit of a function
(2 mks)
b) Using the definition of limits, verify the following limits:
i. $\operatorname{Lim}_{x \rightarrow 2} 5 x-7=3$
(3 mks)
ii. $\operatorname{Lim}_{x \rightarrow 3} 8-2 x=2$
c) Evaluate the following limits:
i. $\operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}-7 x+10}{x^{2}-4}$
ii. $\operatorname{Lim}_{x \rightarrow 2} \frac{(x-4)^{3}}{|4-x|}$
d) Differentiate the following functions:

$$
\begin{equation*}
\text { i. } \quad y=\frac{(2 x-5)}{\left(x^{2}+1\right)} \tag{3mks}
\end{equation*}
$$

$$
\text { ii. } \quad f(x)=x^{2}\left(5+x^{-4}\right)
$$

QUESTION THREE (20 MARKS)

a) i. Find the equation of the line that passes through the point $(5,1)$ and whose slope is equal to $1 / 2$.
(3 mks)
ii. Given L being the line $4 x+3 y=6$. Find the equation of the line L_{2} perpendicular to L through $\mathrm{Q}(2,-3)$.
b) Integrate $\frac{d y}{d x}=2 x^{3}+3 x^{5}$
c) Find the equations of the tangent and normal to $y=x^{3}-2 x^{2}+6$ at $(1,4)$
(4 mks)
d) Differentiate:
i. $y=\frac{\left(2 x^{2}+3 x\right)}{(x+1)^{2}}$
ii. $x=\sqrt{y}-10$
iii. $y=2 x^{5 / 2}+x^{3 / 2}+4$

QUESTION FOUR (20 MARKS

a) An object moves along a line in such a way that its position at time t is:

$$
S(t)=t^{3}-6 t^{2}+9 t+5
$$

i. Find the velocity and acceleration of the object at time t at $t=1 \mathrm{sec}$. and $\mathrm{t}=2$ seconds.
(5 mks)
ii. When is the object stationary?
b) Integrate the following function:

$$
\begin{equation*}
\int_{1}^{2}\left(2 x^{3}+x\right) d x \tag{3mks}
\end{equation*}
$$

c) Given $y=2 x^{2}-6 x$
i. Find the critical points.
(2 mks)
ii. Maximum and minimum values of y.
d) Differentiate and find gradient at the point given:
i. $\quad f(x)=2 x^{2}+x+6$ at point $(1,2)$
ii. $f(x)=x^{3}+x^{2}+x+5$ at point $(2,4)$

QUESTION FIVE (20 MARKS)

a) Differentiate
i. $y=\frac{\left(2 x^{2}+1\right)^{2}}{x+1}$
ii. $y=\sqrt{x^{2}+2 x}$
(3 mks)
iii. $y=\left(2 x^{2}+x+1\right)(x+1)^{5}$
(4 mks)
b) Using the definition of limits, verify the following limit:

$$
\begin{equation*}
\operatorname{Lim}_{x \rightarrow 0} 3 x \operatorname{Sin} \frac{1}{x}=0 \tag{4mks}
\end{equation*}
$$

c) Given the function $y=2 x^{3}+2 x+4$, find the gradient of the curve at a point $(1,6)$.
d) Given the curve $y=x^{2}-4$, find the area under the curve bounded by the curve and x-axis.
e) Differentiate

$$
\begin{align*}
& \text { i. } y=\frac{\left(2 x^{2}+1\right)^{2}}{x+1} \tag{3mks}\\
& \text { ii. } x^{2}+x y^{2}+y^{2}+4 x+6=0 \tag{5mks}
\end{align*}
$$

