KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE - UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 022

- COURSE TITLE: BASIC CALCULUS
- STREAM: SEMESTER TWO
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 18/03/2009

INSTRUCTIONS:

Attempt **QUESTION ONE** and **ANY OTHER TWO** questions.

PLEASE TURN OVER

Question One (30mks)

(a) A real valued function is defined by f() = 2(4 - 1) + 2. Find

- (i) f(0) (2mks)
 - (ii) f (2) (2mks)
- (iii) **+1** (3mks)

(b) Using the first principle technique find — of the following functions at a specified point.

- (i) y = 2 + 4 + 9 at = 2 (3mks)
- (ii) () = at = 1 (3mks)
- (iii) () = $\sqrt{-+3t}$ = 3 (3mks)

(c) Find — of the following functions

(i) () =
$$\sqrt{+4} + 2$$
 (2mks)

(ii) () = +--2 (2mks)

(d) Evaluate the following limits

(i)
$$\lim_{x \to 3} \frac{x^2 + 5x + 6}{x^2 + 8x + 15}$$
 (3mks)

(ii)
$$\lim_{x \to 2} \frac{(x+4)^2}{(x-4)^2}$$
 (3mks)

(iii)
$$\lim_{x \to -1} x^2 + 4x + 2$$
 (1mk)

Question Two (20mks)

(a) Let () = $-2 + 4 + 1$, () = -2	
Find (i) () \cdot 3 ()	(2mks)
(ii) fog	(2mks)
(iii) fof	(2mks)
(iv) - (iv)	(4mks)

(b) Show that

(i) lim →	4 + 8 = 16	(4mks)
(ii) lim →	+ 4 + 2 = 7	(4mks)
(iii) lim →	=	(2mks)

Question Three (20mks)

(a) Find — of the following functions.

(i) = (2 + 4 + 1)(+ 2 + 3) (3mks)

(ii) = (+4 + 1) (+9) (3mks)

(iii)
$$=\frac{2+2+7}{(+2)^2}$$
 (3mks)

(iv)
$$=\sqrt{8 + 4 + 7}$$
 (3mks)

(b) Evaluate the following limits

(i)
$$\lim_{x \to -1} x^2 + 4x + 2$$
 (1mk)

(ii)
$$\lim_{x \to 0} \frac{x^2 + x}{x}$$
 (2mks)

(c) Show that
$$\lim_{x \to -1} 2x^2 + 4x + 1 = 3$$
 (5mks)

Question Four (20mks)

 (a) Find the velocity and acceleration at a time t = 1 for a particle moving in straight line if its motion obeys the law

(i) $= +5 + 4$ (6n)	nk	S)
---------------------	----	---	---

(ii)	When is the particle stationary	(3mks)
------	---------------------------------	--------

- (b) Write the equation of tangent and normal to the curve () = 4 + 2 + 1 at a point (2, 3)
 (6mks)
- (c) Find the equation of the curve given the gradient is 4 2 at (1, 2) (5mks)

Question Five (20mks)

(a)	Investigate the local extrema to the function	()=2	- 3	- 12	+ 5	(5mks)
(b)	∫ (2 + 4 + 1)					(3mks)
(c)	Find the area tender the curve $= -4$					(6mks)
(d)	Give an implicit function + + + $8 = 0$					
	Find —					(6mks)