

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR

 FOR THE CERTIFICATE OF BRIDGING MATHEMATICS
COURSE CODE: BMATH 003

COURSE TITLE: BASIC CALCULUS

STREAM: BRIDGING MATHEMATICS
DAY:

THURSDAY

TIME:
9.00-11.00 A.M.

DATE:
29/07/2010

INSTRUCTIONS:

- Answer Question ONE and Any Other TWO Questions

PLEASE TURN OVER

QUESTION ONE [30 MARKS]

a) Define the following terms:
i. Calculus
ii. Function
iii. Domain
b) Given that $f(x)=5 x^{3}-13 x^{2}+m$ and $f(1)=0$, find the value of m hence find $f(5)$
c) Given that $f(x)=x^{2} g(x)=(x-3)^{1 / 2}$ find, stating the domain of each of the following:
i. $\quad \mathrm{f}+\mathrm{g}$
ii. $\quad 3 \mathrm{f}-\mathrm{g}$
iii. f/g
iv. g-g
d) Evaluate the following:
i. $\quad \lim _{x \rightarrow 0}\left[\left(x^{5}+2 x-5\right) /\left(2 x-x^{2}\right)\right]$
ii. $\quad \lim _{x \rightarrow 0}\left(1 / x^{2}\right)$
iii. $\quad \lim _{x \rightarrow 0} \quad\left(x^{1 / 2}\right)$
e) Differentiate from $1^{\text {st }}$ principle

$$
y=x^{2}+5 x
$$

QUESTION TWO [20 MARKS]

a) Define the point of inflection as used in calculus
b) Find the equation of the normal and tangent of the curve $y=x^{3}+6 x^{2}-3 x+1$ at the indicated point $x=2$
c) Find $\frac{d y}{d x}$ given $y=(x 2+x+4)(x 3+4 x 2+5 x+1)$
d) Determine the value of dy/dx $(3 x-1)^{2 / 3}$ chain rule
e) Find the stationery point of the function $y=x^{3}-3 x^{2}-9 x$ and investigate their nature

OUESTION THREE [20 MARKS]

a) Given that the acceleration of a particle at any given time t, is described by the equation $a=2 t+3 t^{2}$, find the equation of its velocity at any time t if it is known that velocity is $20 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=11 \mathrm{sec}$. Further find the equation for the distance_given that the particle is known to have covered 54 m when $\mathrm{t}=23 \mathrm{sec}$
[10marks]
b) Define the term differentiation as used in calculus
[1mark]
c) Use the mid-ordinate rule with 5 stripes to estimate the area under the curve $\mathrm{y}=\mathrm{x}^{3}$ on the x axis from $\mathrm{x}=0$ upto $\mathrm{x}=10$. Use the method of integration to establish the exact area under the curve and find its
percentage error in the estimate when the mid ordinate rule is used
a) Differentiate from $1^{\text {st }}$ principle $y=5$
b) Differentiate the following :

$$
\begin{aligned}
& \mathrm{y}=(5 \mathrm{x}+4) /(7 \mathrm{x}-6) \\
& \mathrm{y}=(\mathrm{x}+1) /(\mathrm{x}-2)
\end{aligned}
$$

c) Find $\frac{d y}{d x}$ for $\left(x^{2}+y^{2}\right)^{2}$
d) Find the slope of the tangent to the curve at $x^{2}+x / y+y^{2}$ at the point $(1,2)$
e) A particle moves in a straight line so that t sec after passing a fixed point in the line, its velocity, $\mathrm{V} \mathrm{m} / \mathrm{s}$ is given by $v=1 / 2 t^{p}-3 t+7$. Find :
i. $\quad \mathrm{V}$ after 8 sec.
ii. $\quad a$ when $t=0$
iii. Minimum velocity
[6marks]

QUESTION FIVE [20MARKS]

a) Draw the graph of $\mathrm{y}=1 / 2 \mathrm{x}^{2}-2$ for the values of $\mathrm{x}-4 \leq x \geq 4$. Estimate the area enclosed by the curve at $\mathrm{x}=-2$ and $\mathrm{x}=4$ and the x axis using 6 stripes by ordinate rule
b) Evaluate the following:

$$
{ }_{1} \int^{5}\left(x^{2}-6 x+5\right)
$$

c) A body in motion is known to be accelerating according to the equation $a=4 t^{3}-3 t^{2}-6 t$, where a is the acceleration at any time t. Find the equation governing this body's velocity given that the velocity is known to be $12 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=2 \mathrm{sec}$. Establish the equation governing the body's distance at any time t given that $\mathrm{s}=2 \mathrm{~m}$ when $\mathrm{t}=0$

