

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF BRIDGING MATHEMATICS

COURSE CODE: BMATH 003

COURSE TITLE: BASIC CALCULUS

- **STREAM: BRIDGING MATHEMATICS**
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 29/07/2010

INSTRUCTIONS:

• Answer Question **ONE** and Any Other **TWO** Questions

PLEASE TURN OVER

QUESTION ONE [30 MARKS]

a) Define the following terms:

i. Calculus

- ii. Function iii. Domain [3 mat
- iii. Domain [3 marks]

b) Given that $f(x) = 5x^3 - 13x^2 + m$ and f(1) = 0, find the value of m hence find f(5) [3marks]

c) Given that $f(x)=x^2$ g(x)=(x-3)^{1/2} find, stating the domain of each of the following:

- i. f + g
- ii. 3f –g
- iii. f/g

iv. g-g

d) Evaluate the following:

i. $\lim_{x\to 0} \left[(x^5 + 2x - 5)/(2x - x^2) \right]$ [3marks] ii. $\lim_{x\to 0} (1/x^2)$ [4marks] iii. $\lim_{x\to 0} (x^{1/2})$ [5marks]

[8marks]

[1mark]

e) Differentiate from 1st principle

$$y=x^2+5x$$
 [4marks]

QUESTION TWO [20 MARKS]

a) Define the point of inflection as used in calculus

b) Find the equation of the normal and tangent of the curve $y=x^3+6x^2-3x+1$ at the indicated point x=2

	[4marks]
c) Find $\frac{dy}{dx}$ given y=(x2+x+4) (x3+4x2+5x+1)	[3marks]
d) Determine the value of $dy/dx (3x-1)^{2/3}$ chain rule	[4marks]

e) Find the stationery point of the function $y=x^3-3x^2-9x$ and investigate their nature [8marks]

QUESTION THREE [20 MARKS]

a)	Given that the acceleration of a particle at any given time t, is described by the equation a=2	t+3t ² , find the
	equation of its velocity at any time t if it is known that velocity is 20m/s when t=11sec. Further find the	
	equation for the distance_given that the particle is known to have covered 54m when t=23sec	
		[10marks]
b)	Define the term differentiation as used in calculus	[1mark]
c)) Use the mid-ordinate rule with 5 stripes to estimate the area under the curve $y=x^3$ on the x axis from	
	x = 0 up to $x = 10$. Use the method of integration to establish the exact area under the curve and find its	

percentage error in the estimate when the mid ordinate rule is used [9marks] $\begin{array}{c} \underline{OUESTION FOUR [20 MARKS]} \\ a) \text{ Differentiate from 1st principle y=5} [2marks] \\ b) \text{ Differentiate the following :} \\ & y=(5x+4)/(7x-6) \\ & y=(x+1)/(x-2) \\ & (5marks) \\ e) \text{ Find } \frac{dy}{dx} \text{ for } (x^2+y^2)^2 \\ & (3marks) \\ d) \text{ Find the slope of the tangent to the curve at } x^2+x/y+y^2 \text{ at the point } (1, 2) \\ & (3marks) \\ e) \text{ A particle moves in a straight line so that t sec after passing a fixed point in the line , its velocity ,V m/s is given by v=1/2 t^P -3t+7.Find : \\ & V = 0 \\ \end{array}$

- i. V after 8sec.
- ii. a when t=0
- iii. Minimum velocity [6marks]

QUESTION FIVE [20MARKS]

a) Draw the graph of $y=1/2x^2-2$ for the values of $x -4 \le x \ge 4$. Estimate the area enclosed by the curve at x=-2and x=4 and the x axis using 6 stripes by ordinate rule [9marks]

b) Evaluate the following:

$$1^{5}$$
 (x²-6x+5) [3marks]

c) A body in motion is known to be accelerating according to the equation $a=4t^3-3t^2-6t$, where a is the acceleration at any time t. Find the equation governing this body's velocity given that the velocity is known to be 12m/s when t=2sec.Establish the equation governing the body's distance at any time t given that s=2m when t=0 [8marks]