KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF PRE – UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 022

COURSE TITLE: BASIC CALCULUS

- STREAM: SEMESTER TWO
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 18/03/2010

INSTRUCTIONS:

Attempt **Question One** and **any other two** questions.

PLEASE TURN OVER

QUESTION ONE - COMPULSORY (30 MARKS)

a)	Given $f(x)=x^2+2x+1$; evaluate f at the input values	
	i. 1	(2 mks)
	ii. x+1	(3 mks)
	iii. f(1)	(3 mks)

b) Let
$$f(x)=x^3+2x^2-4x$$
 and $g(x)=x-2$. Find:

i.
$$f(x)+g(x)$$
 (3 mks)

 ii. $f(x)g(x)$
 (2 mks)

 iii. $\frac{f(x)}{g(x)}$
 (3 mks)

c) Using the first principle method differentiate the following functions:

i.
$$y=2x+4$$
 (3 mks)
ii. $y=2x^2+5$ (3 mks)

iii.
$$y = \frac{1}{x^2}$$
 (3 mks)
iv. $y = \overline{)x - 2}$ (3 mks)

d) Evaluate the following limit:
$$\lim_{x \to 0} \frac{x^2 + x}{x}$$
 (2 mks)

QUESTION TWO (20 MARKS)

a)	Define limit.			(2 mks)

b) Using the definition of limits, verify the following limits: $I_{im} 5x - 7 = 3$

1.
$$\lim_{x \to 2} 5x - 7 = 3$$
 (3 mks)
ii $\lim_{x \to 2} 2x = 2$ (3 mks)

ii.
$$\lim_{x \to 3} 8 - 2x = 2$$
 (3 mks)

c) Evaluate the following limits:

i.

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4}$$
(3 mks)
(3 mks)

ii.
$$\lim_{x \to 2} \frac{(x-4)^2}{|4-x|}$$
 (3 mks)

d) Differentiate the following functions:

i.
$$y = \frac{(3x-6)}{(x^2+2)}$$
 (3 mks)

ii.
$$f(x) = x^2 (2 + 2x^{-4})$$
 (3 mks)

QUESTION THREE (20 MARKS)

- a) i. Find the equation of the line that passes through the point (5,1) and whose slope is equal to $\frac{1}{2}$. (3 mks)
 - ii. Given L being the line 4x+3y=6. Find the equation of the line L_2 perpendicular to L through Q(2,-3). (3 mks)

b) Integrate
$$\frac{dy}{dx} = 2x^3 + 3x^5$$
 (3 mks)

- c) Find the equations of the tangent and normal to $y=x^3-2x^2+6$ at (1,4). (4 mks)
- d) Differentiate:

i.
$$y = \frac{(2x^2 + 3x)}{(x+1)^2}$$
 (4 mks)

ii.
$$x = \sqrt{y - 10}$$
 (2 mks)

iii.
$$y = 2x^{\frac{3}{2}} + x^{\frac{3}{2}} + 4$$
 (1 mk)

QUESTION FOUR (20 MARKS

- a) An object moves along a line in such a way that its position at time t is: $S(t)=t^3-6t^2+9t+5$
 - i. Find the velocity and acceleration of the object at time t at t=1 sec. and t=2 seconds. (5 mks)
 - ii. When is the object stationary? (3 mks)
- b) Integrate the following function:

$$\int_{1}^{2} (2x^{3} + x) dx \qquad (3 \text{ mks})$$

c) Given y=2x²-6x

Find the critical points.
Maximum and minimum values of y.

d) Differentiate and find gradient at the point given:

- i. $f(x)=2x^2+4x+6$ at point (1,2)
 - ii. $f(x)=x^3+2x^2+x+5$ at point (2,4) (2 mks)

(2 mks)

QUESTION FIVE (20 MARKS)

a) Differentiate

i.
$$y = \frac{(2x^2 + 1)^2}{x+1}$$
 (3 mks)

$$ii. \quad y = \sqrt{x^2 + 2x} \tag{3 mks}$$

iii.
$$y = (2x^2 + x + 1)(x + 1)^5$$
 (4 mks)

b) Using the definition of limits, verify the following limit:

$$\lim_{x \to 0} 3x \sin \frac{1}{x} = 0 \tag{4 mks}$$

- c) Given the function $y = 2x^3 + 2x + 4$, find the gradient of the curve at a point (1,6). (2 mks)
- d) Given the curve $y=x^2-4$, find the area under the curve bounded by the curve and x-axis.
- e) Differentiate

i.
$$y = \frac{(2x^2 + 1)^2}{x + 1}$$
 (3 mks)

ii.
$$x^2 + xy^2 + y^2 + 4 = 0$$
 (5 mks)