KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE-UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 022

COURSE TITLE: BASIC CALCULUS

- **STREAM: SEMESTER TWO**
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 02/08/2010

INSTRUCTIONS:

- 1. Attempt question **ONE** and any other **TWO** questions.
- 2. Show your **workings** clearly.

PLEASE TURN OVER

QUESTION ONE (30marks)

Answer all questions

a)	a) What do you understand by the following terminologies;		
	i) a normal and tangent equations		
	ii) a function		
	iii) local extrema		(6mks)
b) $f(x) = 2x^2 + x + 1$ and $g(x) = 3x + 2$, find			
	i)	f(x)+g(x)	(2marks)
	ii)	gogof	(2marks)
	iii)	f(x).g(x)	(2marks)

iv)
$$f(x)/g(x)$$
 (2marks)

c) Using the first principle method, differentiate

i.
$$y=x^2+3x-5$$
 (3marks)

ii.
$$f(x) = \sqrt{x+2}$$
 (3marks)

- d) Differentiate the following
 - i. $Y=x^2+2x^2-x+6$ at x=1 (1marks)

ii.
$$h(x)=(2x^3+3)^3(x^4+1)^2$$
 at x=0 (2marks)

iii.
$$y = \frac{x^2 + 1}{x^2 - 1}$$
 at x=3 (2marks)

iv.
$$y=(x^2+1)^6$$
 at $x=2$ (2marks)

e) Evaluate the limits

i.
$$\lim_{x \to 2} \frac{x^2 - 25}{x - 5}$$
 (2marks)

ii.
$$\lim_{x \to 1} \frac{x^2 + x}{x^2 - 1}$$
 (2marks)

QUESTION TWO

- a) The total area of the surface of a solid cylinder is 132 cm^2 .if the height of the cylinder is h cm and its radius is r cm, show that h = 2 - r. Hence find the volume of the cylinder. (5marks)
- b) A curve passes through (2, 3) and its gradient function is 3x-2.find its equation (2marks)
- c) State the ε -d definition of a limit L of a function f(x) as x tends to a point x=a and use it to prove that $\lim_{x\to 2} (3x+1=7)$ (5marks)
- d) A ball was thrown upwards with a velocity of 40m/s .find
 - i) Acceleration and velocity statements
 - ii) Maximum it can attain

(6marks)

QUESTION THREE

a) Integrate the following

- i. $\int x^6 dx$ (2marks)
- ii. $\int (5 x+4) dx$ (2marks)
- iii. $\int 2 dx$ (2marks)

iv.
$$\int \frac{6}{x^2} dx$$
 (2marks)

b) Investigate the local extrema to the function

$$y=x^{3}-6x^{2}+9x+2$$
 (5marks)

c) Find the equation of the tangent and normal to the curve

$$y=x^{3}-2x^{2}+3x-1$$
 at the point (2, 5) (4marks)

d) A rectangular storage container with an open top has a volume of 10m³ and the rectangular base is twice its width. Material of the base cost is 10ksh per sq.metres and the material of the side cost 6 ksh per metre.

Express the cost of the material as a function of the width of the base (3marks)

QUESTIION FOUR

a) Find the following integrals:

i)
$$\int (2x^2 + 2x - 1)dx$$
 (2mks)

ii)
$$\int_0 (2x+1)dx$$
 (2 marks)

b) Find the derivatives of the following functions using the first principal technique.

i)
$$y = \frac{1}{x^2}$$

ii) $y = 5x+3$ (8 marks)

c) Find the tangent and normal equation to the curve $x^2 - y^2 = 7$ (4marks) at a point (4,3)

d) Find the area enclosed by $y=5+4x-x^2$, the x-axis and the ordinates 1 and x=4 (4marks)

QUESTION FIVE

a) Given
$$f(x) = 2x^2+1$$
 and $g(x) = x+1$, find;
i. fog (2marks)
ii. $f(2)$ (2marks)
iii. $ff(2)$ (2marks)
iv. gof (2marks)
v. What is the relationship between (i) and (iv) evaluated above?

(1mark)

b) Verify the following limit

$$\operatorname{Lim}_{x \to 1} 5x - 3 = 2 \tag{3marks}$$

c) Differentiate;

i.
$$y=(x^2+2x+10)^{10}$$
 (2marks)

ii.
$$y=(3x^2+10)^3(2x+4)$$
 (3marks)

d) Find the area bounded by the curve $y=3x^2+14x+15$, the x-axis and the ordinates at x=-1 and x=2 (3marks)

Page 4 of 5