

UNIVERSITY

UNIVERSITY EXAMINATIONS
2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF BRIDGING MATHEMATICS

COURSE CODE: BMATH 003

COURSE TITLE: BASIC CALCULUS
STREAM: BRIDGING MATHEMATICS
DAY: THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
29/07/2010

INSTRUCTIONS:

1. Attempt question ONE and any other TWO questions.
2. Show your workings clearly.

PLEASE TURN OVER

QUESTION ONE (30marks)

Answer all questions

a) What do you understand by the following terminologies;
i) a normal and tangent equations
ii) a function
iii) local extrema
b) $f(x)=2 x^{2}+x+1$ and $g(x)=3 x+2$, find
i) $f(x)+g(x)$
ii) gogof
iii) $f(x) \cdot g(x)$
iv) $f(x) / g(x)$
c) Using the first principle method, differentiate

$$
\text { i. } \quad y=x^{2}+3 x-5
$$

ii. $\mathrm{f}(\mathrm{x})=\sqrt{x+2}$
d) Differentiate the following

$$
\begin{array}{lll}
\text { i. } & Y=x^{2}+2 x^{2}-x+6 & \text { at } x=1 \\
\text { ii. } & h(x)=\left(2 x^{3}+3\right)^{3}\left(x^{4}+1\right)^{2} & \text { at } x=0 \\
\text { iii. } & y=\frac{x^{2}+1}{x^{2}-1} & \text { at } x=3 \\
\text { iv. } & y=\left(x^{2}+1\right)^{6} & \text { at } x=2
\end{array}
$$

e) Evaluate the limits
i. $\quad \lim _{x \rightarrow 2} \frac{x^{2}-25}{x-5}$
ii. $\quad \lim _{\mathrm{x} \rightarrow 1} \frac{x^{2}+x}{x^{2}-1}$

QUESTION TWO

a) Given $f(x)=2 x^{2}+1$ and $g(x)=x+1$, find;
i. fog (2marks)
ii. $\quad f(2)$
iii. $\quad \mathrm{ff}(2)$
iv. gof
v. What is the relationship between (i) and (iv) evaluated above?
b) Verify the following limit

$$
\begin{equation*}
\operatorname{Lim}_{x \rightarrow 1} 5 x-3=2 \tag{3marks}
\end{equation*}
$$

c) Differentiate;
i. $\quad y=\left(x^{2}+2 x+10\right)^{10}$
(2marks)
ii. $\quad y=\left(3 x^{2}+10\right)^{3}(2 x+4)$
d) Find the area bounded by the curve $y=3 x^{2}+14 x+15$, the x-axis and the ordinates at $x=-1$ and $x=2$ (3marks)

QUESTION THREE

a) Integrate the following
i. $\quad \int \mathrm{X}^{6} \mathrm{dx}$
(2marks)
ii. $\quad \int(5 x+4) d x$
(2marks)
iii. $\quad \int 2 \mathrm{dx}$
iv. $\int \frac{6}{x^{2}} d x$
(2marks)
b) Investigate the local extrema to the function

$$
\begin{equation*}
y=x^{3}-6 x^{2}+9 x+2 \tag{5marks}
\end{equation*}
$$

c) Find the equation of the tangent and normal to the curve

$$
\begin{equation*}
y=x^{3}-2 x^{2}+3 x-1 \text { at the point }(2,5) \tag{4marks}
\end{equation*}
$$

d) A rectangular storage container with an open top has a volume of $10 \mathrm{~m}^{3}$ and the rectangular base is twice its width. Material of the base cost is 10 ksh per sq.metres and the material of the side cost 6 ksh per metre.

QUESTIION FOUR

a) Find the following integrals:
i) $\int\left(2 x^{2}+2 x-1\right) d x$
(2mks)
ii) $\quad \int_{0}^{4}(2 x+1) d x$
b) Find the derivatives of the following functions using the first principal technique.
i) $y=\frac{1}{x^{2}}$
ii) $y=5 x+3$
c) Find the tangent and normal equation to the curve $x^{2}-y^{2}=7$
at a point $(4,3)$
d) Find the area enclosed by $y=5+4 x-x^{2}$, the x-axis and the ordinates 1 and $x=4$

QUESTION FIVE

a) The total area of the surface of a solid cylinder is $132 \mathrm{~cm}^{2}$.if the height of the cylinder is hcm and its radius is rcm , show that $\mathrm{h}=21$ - r . Hence find the volume of the cylinder.
(5marks)
b) A curve passes through $(2,3)$ and its gradient function is $3 x-2$.find its equation (2 marks)
c) State the ε-d definition of a limit L of a function $f(x)$ as x tends to a point $x=a$ and use it to prove that $\lim _{x \rightarrow 2}(3 x+1=7)$
d) A ball was thrown upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$.find
i) Acceleration and velocity statements
ii) Maximum it can attain

