KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE- UNIVERSITY BIOLOGY

COURSE CODE: PMATH 022

- COURSE TITLE: BASIC CALCULUS
- STREAM: PRE S2
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 03/12/2009

INSTRUCTIONS:

Attempt **Question One** and **any other two** questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a)	Using the first principle method, differentiate the following functions:	
	i) $y=3x+7$	(3 mks)
	ii) y=15	(3 mks)
b)	Suppose that f is a function for all real numbers t defined by:	
	f(t)=3(2t-1)+2;	
	Evaluate: i) $f(x+1)$	(2 mks)
	ii) $fff(1)$	(2 mks)
c)	Given $f(x)=x^3-3x^2-4x$ and $g(x)=x-1$, find:	
	i) $f(x)g(x)$	(2 mks)
	ii) $\frac{f(x)}{(x)}$	(2 mkg)
	ii) $\frac{f(x)}{g(x)}$	(3 mks)
d)	Given the equation of a line L_1 is $3y+6x+10=0$, find the equation of the line p	perpendicular to
	L_1 passing through point (2,6).	(3 mks)
\		

e) Evaluate the following limits:

i)
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$$
 (3 mks)
ii) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$ (3 mks)

f) Given
$$f(x) = \sqrt{x}$$
 and $g(x) = x + 2$, find:

QUESTION TWO (20 MARKS)

a)	A closed tin in the shape of a cylinder is to have a capacity of 250Π mls.	If the area of the
	metal used is to be a minimum, what should the radius of the tin be?	(6 mks)
b)	Find the area enclosed by the curve $y=x^2+5x+6$.	(4 mks)
c)	Determine whether the points $A(1, -1)$, $B(3,2)$ and $C(8,10)$ are collinear,	, that is, lie on the
	same line.	(3 mks)
d)	Differentiate	
	i) $y=2x^2+4x+15$	(2 mks)
	ii) $x = \sqrt{y} + 19$	(2 mks)

iii)
$$f(x) = \sqrt{x^2 + 2x + 6}$$
 (3 mks)

QUESTION THREE (20 MARKS)

a) What do you understand by the following terms:

i)	continuous function	(2 mks)
ii)	"hole"	(2 mks)
iii)	limit of a function	(2 mks)

b) Describe the following function:

$$f(x) = \begin{cases} x^{3} + 2 & if \quad x < 2\\ x^{2} + 6 & if \quad x > 2\\ 10 & if \quad x = 2\\ \frac{1}{x^{2} - 2} & if \quad x < 2 \end{cases}$$
(3 mks)

c) Differentiate and hence find the gradient at a specific point indicated.

i)
$$y = (2x^2 + x + 1)(x^2 + 2)$$
 at (0,1) (4 mks)
ii) $y = (3x^2 + 4)^{10}(x + 4)$ at (0,16) (4 mks)

iii)
$$y = \frac{\sqrt{x^2 + 6x + 1}}{x + 1}$$
 at (1, -3) (3 mks)

QUESTION FOUR (20 MARKS)

a)	Find the tangent and normal line to the curve $f(x)=2x^3+2x+4$ at a point (1,2)	
		(5 mks)

b)) An object moves along a line in such a way that its position at time t is $S(t)=t^3-6t^2+9t+5$		
	i.		
		velocity at time t=2 seconds.	(4 mks)
	ii.	When is the object stationary?	(3 mks)
c)	Given y=	$2x^2-6x$,	
	i.	Find the critical points.	(2 mks)
	ii.	Using the second derivative method, find the local extrema.	(3 mks)
d)	$\int_{-1}^{3} (3x^2 +$	(x+1)dx	(3 mks)

QUESTION FIVE (20 MARKS)

(3 mks)

a) Define a function and give an illustration of function operating like a machine.

b)	Using	the definition of a limit, show that:	
	i)	$\lim_{x \to 10} (3x + 5) = 35$	(4 mks)
	ii)	$\lim_{x \to 0} x^9 = 0$	(4 mks)
c)		rentiate:	
		$y = (3x-1)(x^2-4)$	(3 mks)
	ii)	$y = \frac{2x+3}{2x-3}$	(3 mks)
d)	Evalu	ate $\int_{-1}^{2} (x^2 + 4x) dx$	(3 mks)