KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS
\section*{2009/2010 ACADEMIC YEAR}

FOR THE CERTIFICATE OF PRE- UNIVERSITY BIOLOGY

COURSE CODE: PMATH 022

COURSE TITLE: BASIC CALCULUS
STREAM: PRE - S2
DAY: THURSDAY
TIME:
2.00-4.00 P.M.

DATE:
03/12/2009

INSTRUCTIONS:

Attempt Question One and any other two questions.

QUESTION ONE (30 MARKS)

a) Using the first principle method, differentiate the following functions:
i) $y=3 x+7$
(3 mks)
ii) $y=15$
b) Suppose that f is a function for all real numbers t defined by:
$f(t)=3(2 t-1)+2$;
Evaluate: i) $\mathrm{f}(\mathrm{x}+1) \quad$ (2 mks)
ii) $\quad \mathrm{fff}(1)$
c) Given $f(x)=x^{3}-3 x^{2}-4 x$ and $g(x)=x-1$, find:
i) $\quad f(x) g(x)$
ii) $\frac{f(x)}{g(x)}$
d) Given the equation of a line L_{1} is $3 y+6 x+10=0$, find the equation of the line perpendicular to
L_{1} passing through point $(2,6)$.
e) Evaluate the following limits:
i) $\operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}-7 x+10}{x-2}$
ii) $\operatorname{Lim}_{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(3 mks)
f) Given $f(x)=\sqrt{x}$ and $g(x)=x+2$, find:
$\begin{array}{lll}\text { i) } & \text { fog } & (2 \mathrm{mks}) \\ \text { ii) } & \text { gof } & (2 \mathrm{mks}) \\ \text { iii) } & \text { fof } & (2 \mathrm{mks})\end{array}$

QUESTION TWO (20 MARKS)

a) A closed tin in the shape of a cylinder is to have a capacity of $250 \Pi \mathrm{ml}$. If the area of the metal used is to be a minimum, what should the radius of the tin be?
b) Find the area enclosed by the curve $y=x^{2}+5 x+6$.
c) Determine whether the points $\mathrm{A}(1,-1), \mathrm{B}(3,2)$ and $\mathrm{C}(8,10)$ are collinear, that is, lie on the same line.
d) Differentiate
i) $y=2 x^{2}+4 x+15$
(2 mks)
ii) $x=\sqrt{y}+19$
(2 mks)
iii) $f(x)=\sqrt{x^{2}+2 x+6}$
(3 mks)

QUESTION THREE (20 MARKS)

a) What do you understand by the following terms:
i) continuous function
(2 mks)
ii) "hole"
(2 mks)
iii) limit of a function
b) Describe the following function:

$$
f(x)=\left\{\begin{array}{clc}
x^{3}+2 & \text { if } & x<2 \tag{3mks}\\
x^{2}+6 & \text { if } & x>2 \\
10 & \text { if } & x=2 \\
\frac{1}{x^{2}-2} & \text { if } & x<2
\end{array}\right.
$$

c) Differentiate and hence find the gradient at a specific point indicated.
i) $y=\left(2 x^{2}+x+1\right)\left(x^{2}+2\right)$ at $(0,1)$
ii) $\quad y=\left(3 x^{2}+4\right)^{10}(x+4)$ at $(0,16)$
iii) $y=\frac{\sqrt{x^{2}+6 x+1}}{x+1}$ at $(1,-3)$

QUESTION FOUR (20 MARKS)

a) Find the tangent and normal line to the curve $f(x)=2 x^{3}+2 x+4$ at a point $(1,2)$
(5 mks)
b) An object moves along a line in such a way that its position at time t is $S(t)=t^{3}-6 t^{2}+9 t+5$
i. Find the acceleration and velocity statement and hence evaluate acceleration and velocity at time $\mathrm{t}=2$ seconds.
(4 mks)
ii. When is the object stationary?
(3 mks)
c) Given $y=2 x^{2}-6 x$,
i. Find the critical points.
(2 mks)
ii. Using the second derivative method, find the local extrema.
d) $\int_{-1}^{3}\left(3 x^{2}+x+1\right) d x$

QUESTION FIVE (20 MARKS)

a) Define a function and give an illustration of function operating like a machine.
(3 mks)
b) Using the definition of a limit, show that:
i) $\operatorname{Lim}_{x \rightarrow 10}(3 x+5)=35 \quad$ (4 mks)
ii) $\operatorname{Lim}_{x \rightarrow 0} x^{9}=0$
c) Differentiate:
i) $y=(3 x-1)\left(x^{2}-4\right)$
(3 mks)
ii) $y=\frac{2 x+3}{2 x-3}$
d) Evaluate $\int_{-1}^{2}\left(x^{2}+4 x\right) d x$

