KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: PHYS 120

COURSE TITLE: BASIC ELECTRONICS

- STREAM: SESSION II
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 10/08/2010

INSTRUCTIONS:

Answer QUESTION 1 and ANY OTHER TWO

PLEASE TURN OVER

Question 1 (30 marks)

(a)	Explain the difference in conductivity between metals, conductors and ins	ulators.
(b)	Explain the term band gap as applied in semiconductors.	1 mark
(c)	Starting with pure silicon material, describe how a p-type semiconductor achieved.	can be 3 marks
(d) Define the following amplifier terms		
	 i) Closed loop gain ii) Open loop gain iii) Loop gain 	3 marks
(e)	The input to the shunt – series feedback amplifier is 5 mA and the output when the feedback network is 10. Find the open loop gain of the amplifie	is 4.5 mA r. 3 marks
(f)	I. Sketch the typical drain curves for an n-type JFET for varying Vgs curves, mark and explain the Pinch – off voltage (Vp) and the IDS	s. On the S 5 marks
	II. Given that $Vp = 5V$ and $I_{DSS} = 10$ mA, find the drain – source rest the JFET.	istance of 2 marks
(g)	Compare the I/V characteristic curves of a Si and Germanium diodes	1 marks
(h)	Explain the three main operating regions of a transistor	6 marks
<u>Ques</u>	tion 2 (20 marks)	
a)	Describe the operation of a full-wave rectifier	5 marks
b)	Draw and explain the principle operation of a zener diode voltage regulate	or. 5 marks
c)	Explain the formation of the depletion layer in a simple pn junction	2 marks
d)	The circuit below shows a gate-biased JFET amplifier.(i) Write the load-line equation.	2 marks

(ii) Determine the Q - point values for the gate biasing circuit if $V_{GG} = -5 V$, $V_{GS}(off) = -7 V$, $I_{DSS} = 9 mA$, $V_{DD} = 5 V$, and $R_D = 500 \Omega$. 6 marks

Question 3 (20 marks)

a) Draw a black box representation of an amplifier with feedback, and use the diagram to show that the closed loop gain of an amplifier employing negative feedback is of the form

 $A_0 = \frac{A}{1 + A\beta}$ where A is the open loop gain and β , the feedback factor. 6 marks

- b) Derive the expression for the input and output impedance of a series-shunt feedback amplifier. 6 marks
- c) Describe the following advantages of negative feedback amplifier

i)	Minimization of gain distortion	4 marks
ii)	Bandwidth extension	4 marks

Question 4 (10 marks)

- a) With the aid of a well labeled charge carrier flow diagram, derive the fundamental BJT relations. 8 marks
- b) For the circuit shown below, $R_1 = 4k\Omega$, $R_3 = 200k\Omega$, $R2 = 500 \Omega$, $\beta = 100$, $V_{BE} = 0.7 V$, $V_{bb} = 5V$ and $V_{CC} = 12 V$.

i)	Find the transistor currents I_B , I_C and I_E .	6 marks
ii)	Determine V _{CB}	3 marks
iii)	Draw the load-line and estimate the Q point	3 marks