UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHYS 120

COURSE TITLE: BASIC ELECTRONICS

STREAM: SESSION II

DAY: TUESDAY
TIME: $\quad 9.00-11.00$ A.M.
DATE:
10/08/2010

INSTRUCTIONS:
Answer QUESTION 1 and ANY OTHER TWO

PLEASE TURN OVER

Question 1 (30 marks)

(a) Explain the difference in conductivity between metals, conductors and insulators. 3 marks
(b) Explain the term band gap as applied in semiconductors. 1 mark
(c) Starting with pure silicon material, describe how a p-type semiconductor can be achieved.
(d) Define the following amplifier terms
i) Closed loop gain
ii) Open loop gain
iii) Loop gain

3 marks
(e) The input to the shunt - series feedback amplifier is 5 mA and the output is 4.5 mA when the feedback network is 10 . Find the open loop gain of the amplifier.

3 marks
(f) I. Sketch the typical drain curves for an n-type JFET for varying Vgs. On the curves, mark and explain the Pinch - off voltage (Vp) and the IDSS 5 marks
II. Given that $\mathrm{Vp}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$, find the drain - source resistance of the JFET.

2 marks
(g) Compare the I/V characteristic curves of a Si and Germanium diodes
(h) Explain the three main operating regions of a transistor 6 marks

Question 2 (20 marks)

a) Describe the operation of a full-wave rectifier 5 marks
b) Draw and explain the principle operation of a zener diode voltage regulator. 5 marks
c) Explain the formation of the depletion layer in a simple pn junction 2 marks
d) The circuit below shows a gate-biased JFET amplifier.
(i) Write the load-line equation. 2 marks
(ii) Determine the Q - point values for the gate biasing circuit if $\mathrm{V}_{\mathrm{GG}}=-5 \mathrm{~V}$,

$$
\mathrm{V}_{\mathrm{GS}}(\mathrm{off})=-7 \mathrm{~V}, \mathrm{I}_{\mathrm{DSS}}=9 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \text { and } \mathrm{R}_{\mathrm{D}}=500 \Omega . \quad 6 \text { marks }
$$

Question 3 (20 marks)

a) Draw a black box representation of an amplifier with feedback, and use the diagram to show that the closed loop gain of an amplifier employing negative feedback is of the form
$A_{0}=\frac{A}{1+A \beta}$ where A is the open loop gain and β, the feedback factor. 6 marks
b) Derive the expression for the input and output impedance of a series-shunt feedback amplifier.
c) Describe the following advantages of negative feedback amplifier
i) Minimization of gain distortion
4 marks
ii) Bandwidth extension
4 marks

Question 4 (10 marks)

a) With the aid of a well labeled charge carrier flow diagram, derive the fundamental BJT relations.
b) For the circuit shown below, $\mathrm{R}_{1}=4 \mathrm{k} \Omega, \mathrm{R}_{3}=200 \mathrm{k} \Omega, \mathrm{R} 2=500 \Omega, \beta=100$, $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{bb}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$.

i) Find the transistor currents $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and I_{E}.

6 marks
ii) Determine $V_{C B}$
iii) Draw the load-line and estimate the Q point

