

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: PHYS 120

COURSE TITLE: BASIC ELECTRONICS

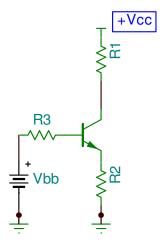
STREAM: Y1S2

DAY: FRIDAY

TIME: 2.00 - 4.00 P.M.

DATE: 18/03/2011

INSTRUCTIONS:


Answer question ONE and any other TWO

PLEASE TURN OVER

Question 1 (30 marks)

i)

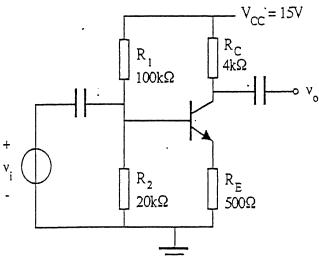
- a) Name the main charge carriers in
 - (i) Metals (1 mark)
 - (ii) Semiconductors (1 mark)
- b) Describe the operation of a full-wave rectifier (5 marks)
- c) List 2 disadvantages of negative feedback in amplifiers. (2 marks
- d) For the circuit shown below, R_1 = 3k, R_3 = 200k, R_2 = 500 ohms, β =100, V_{BE} = 0.7 V, V_{bb} = 5V and V_{CC} = 14 V. Find the transistor currents I_B and I_C . (5 marks)

- e) Explain how a BJT can act as a switch (2 marks)
- f) Give arbitrary base and collector I/V characteristics for an npn transistor in the active region starting with $V_{\rm BE} = 0$ V. (2 marks)
- g) Briefly explain the following methods of pn junction formation

State why a FET is called a unipolar device.

- (i) Grown junction (2 marks)
- (ii) Alloying (2 marks)
- h) With aid of diagram, explain how an p-type material can be achieved (4 marks)

- j) State the four possible operating regimes of a BJT and give the required biasing conditions (6 marks)
- k) Explain the term thermal runaway and how it brings about transistor failure. (2 marks)

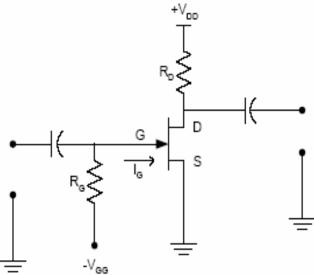

(1 marks)

Question 2 (20 marks)

- a) With regard to feedback amplifiers, define the following terms:
 - i) Open loop gain (1 mark)
 - ii) Closed loop gain (1 mark)
 - iii) Round trip gain (1 mark)
- b) Draw a black box representation of an amplifier with feedback and show how quantitatively that feedback reduces gain sensitivity. (8 marks)
- c) i) state the criteria for oscillation to occur in a circuit (2 marks)
 - ii) Draw a circuit diagram of a Colpitts oscillator and derive its resonance frequency (7 marks)

Question 3 (20 marks)

- a) i) Define transistor biasing. (1 mark)
 - ii) State the advantage of potential divider bias method over base bias (2 marks)
 - iii) Draw a single stage BJT circuit employing base biasing and show that the $I_{\rm C}$ current for a base bias circuit is likely to be unstable. Provide the reason for instability. (7 marks)
- b) The circuit below shows a single stage transistor amplifier.
 - i) Determine the quiescent voltage V_{CQ} and quiescent collector current I_{CQ} . (use $\beta = 100$, $V_{BE} = 0.6$ V) (5 marks)
 - ii) Sketch the output characteristics (I_C versus V_{CE}) and the load line. (5marks)



Question 4 (20 marks)

- a) State the functional differences between the following family of FET devices: Depletion Mode MOSFET and Enhancement Mode MOSFET. (3 marks)
- b) With the aid of a diagram, explain how the Gate voltage controls current flow in a JFET. (5 marks)
- c) For $V_{gs} = 0$, sketch the Drain current versus V_{DS} curve. Mark and explain the following:
 - i) I_{DSS}
 - ii) $V_{\rm p}$
 - iii) Breakdown region
 - iv) Ohmic region

(8 marks)

d) The circuit below shows a gate-biased JFET amplifier. Determine the Q - point values for the gate biasing circuit if V_{GG} = -5 V, V_{GS} (off) = -7 V, I_{DSS} = 9 mA, V_{DD} = 5 V, and R_D = 500 Ω . (4 marks)

