KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

AND BACHELOR OF SCIENCE IN ECONOMICS AND

MATHEMATICS

- COURSE CODE: MATH 110
- **COURSE TITLE: BASIC MATHEMATICS**
- STREAM: Y1S1
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 11/12/2009

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Verify the distribution rule of union over intersection by use of a truth table. (8mks)

(b) (i)	Write short notes on the following;
---------	-------------------------------------

I) Union setII) Intersection setIII) Universal set	(2 mks) (2 mks) (2 mks)
(ii) Eliminate A from $x = asin A$ and $y = btan A$	(7 mks)
(c) Given $f(x) = 4x^2 - 5x + 8$ Find $f^{-1}(x)$	(4 mks)
(d) Show that $\sqrt{2}$ is an irrational number.	(5 mks)

QUESTION TWO (20 MARKS)

(a) State De`morgans Laws and hence prove them by reasoning technique

(14mks)

(b) Prove that
$$\sum_{j^{1}=1}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
 By mathematical induction (6 mks)

QUESTION THREE (20 MKS)

(a) Derive the following;	
(i) The sum of a A.P.	(5 mks)
(ii) Sum of G.P.	(5 mks)
(iii) Sum to infinity	(5 mks)

(b) Express the following in lowest form

(i) 0.45	(2 mks)
(ii) 0.07	(3 mks)

QUESTION FOUR (20 MKS)

(a) Prove that;

$$\cos A + \cos B + \cos C - 1 = 4 \sin A / 2 \sin B / 2 \sin C / 2$$
(13 mks)

(ii) $\frac{\cos\theta\sin^2 + \cos^3}{\sin\theta} = \frac{1}{\tan\theta}$ (1mks)

(4mks)

(b) Derive cosine Rule

QUESTION FIVE (20 MARKS)

(a) Define the following terms;				
i)	Permutation	(2 mks)		
ii)	Combination	(2 mks)		
(b) How many 3 digit number formed from 1, 2, 3, 4, 5, 6				
	(i) If repetition is allowed	(2 mks)		
	(ii) Without repetition	(2 mks)		
 (c) There are 3 boys and 4 girls at a birthday party. In how many ways can a team of 5 pupils be formed so as to include at least one boy. (5 mks) 				
(d) Use	binomial to expand $1/(1-x)$ as far as the term in $x3=1$	(7 mks)		