UNIVERSITY EXAMINATIONS
 2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE AND BACHELOR OF ECONOMIC \& MATHEMATICS

COURSE CODE: MATH 110

COURSE TITLE: BASIC MATHEMATICS
STREAM: Y1S1
DAY:
FRIDAY
TIME:
9.00 - 11.00 A.M.

DATE:
19/03/2010

INSTRUCTIONS:

Attempt question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Draw the truth table of the following propositional form $p \Rightarrow \sim q \sim(V \sim r)$ (5 marks)
(b) Use the binomial theorem to expand $\frac{1}{(1-x)}$ in ascending power of x, as far as the term in x^{3}.
(c) Prove that $\frac{\sqrt{3}+1}{\sqrt{3}+1}$ is irrational.
(d) Using Boolean Algebra show that $(A \cup B)^{1}=A^{1} \cap B^{1}$.
(e) The $3^{\text {rd }}, 5^{\text {th }}$ and $8^{\text {th }}$ terms of an A.P are the consecutive terms of a G.P. Given that the first term of the A.P is 8 determine the common difference d and the common ratio r .
(f) Using reasoning technique prove that $\boldsymbol{A}-\boldsymbol{B}=\boldsymbol{A} \cap \boldsymbol{B}^{\mathbf{1}}$

QUESTION TWO (20 MARKS)

(a) Define composition of functions
(b) Given $f(x)=x^{3}+4 x^{2}+5 x+2, \quad g(x)=x^{2}+1$ $h(x)=x+1, \quad n(x)=2$
Find;
(i) $\quad f(x) g(x)$
(3 marks)
(ii) $f o g$
(3 marks)
(iii) fogoh
(3 marks)
(iv) fogohon
(v) $\left\{(h(x))^{2}\right\}^{-1}$
(vi) $\frac{f(x)}{h(x)}$

QUESTION THREE (20 MARKS)

(a) Derive the formula of A.P and G.P and hence find the sum of $\left\{X_{n}\right\}=0 . \ddot{4} 5$ (10 marks)
(b) Prove the following by mathematical induction;

$$
1^{2}+2^{2}+---+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

(c) Using the Binomial theorem estimate the value of $\sqrt{10}$.

QUESTION FOUR (20 MARKS)

(a) Without using tables or calculators find the value of $\sin \left(120^{\circ}+45^{\circ}\right)$
(b) If $\sin (x+\alpha)=\cos (x-\beta)$ Find $\tan x$ in terms of α and β
(c) Derive the sine and cosine Rules

QUESTION FIVE (20 MARKS)

(a) What do you understand by the following terminologies
(i) Permutation
(2 marks)
(ii) Combination
(2 marks)
(b) A mixed hockey team containing 5 men and 6 women is to be selected from 7 men and 9 women. In how many ways can this be done?
(6 marks)
(c) Evaluate $12_{C_{9}}-10_{P_{7}}$
(d) How many even numbers, greater than 2000, can be formed with digits 1, 2, 4, 8 , if each digit may be used only once in each number?

