KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE AND BACHELOR OF ECONOMIC & MATHEMATICS

COURSE CODE: MATH 110

COURSE TITLE: BASIC MATHEMATICS

STREAM: Y1S1

DAY: FRIDAY

TIME: 9.00 – 11.00 A.M.

DATE: 19/03/2010

INSTRUCTIONS:

Attempt question **ONE** and any other **TWO** Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Draw the truth table of the following propositional form $p \Rightarrow \sim q \sim (V \sim r)$ (5 marks)
- (b) Use the binomial theorem to expand $\frac{1}{(1-x)}$ in ascending power of x, as far as the term in x^3 . (5 marks)

(c) Prove that
$$\frac{\sqrt{3}+1}{\sqrt{3}+1}$$
 is irrational. (5 marks)

- (d) Using Boolean Algebra show that $(A \cup B)^1 = A^1 \cap B^1$. (5 marks)
- (e) The 3rd, 5th and 8th terms of an A.P are the consecutive terms of a G.P. Given that the first term of the A.P is 8 determine the common difference d and the common ratio r. (5 marks)
- (f) Using reasoning technique prove that $A B = A \cap B^1$ (5 marks)

QUESTION TWO (20 MARKS)

(a)	Define	composition of functions		(3 marks)
(b)		$f(x) = x^{3} + 4x^{2} + 5x + 2,$ h(x) = x + 1, n(x) = 2	$g(x) = x^2 + 1$	
	Find;			
	(i)	f(x) g(x)		(3 marks)
	(ii)	fog		(3 marks)
	(iii)	fogoh		(3 marks)
	(iv)	fogohon		(3 marks)
	(v)	${(h(x))^2}^{-1}$		(3 marks)
	(vi)	$\frac{f(x)}{h(x)}$		(2 marks)

QUESTION THREE (20 MARKS)

- (a) Derive the formula of A.P and G.P and hence find the sum of $\{X_n\} = 0.4\ddot{5}$
- (10 marks)(b) Prove the following by mathematical induction;

$$1^{2} + 2^{2} + - - - + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$
 (5 marks)

(c) Using the Binomial theorem estimate the value of $\sqrt{10}$. (5 marks)

QUESTION FOUR (20 MARKS)

(a)	Without using tables or calculators find the value of $sin(120^{0} + 45^{0})$	(6 marks)
(b)	If $sin(x + \alpha) = cos(x - \beta)$ Find $tan x$ in terms of α and β	(4 marks)
(c)	Derive the sine and cosine Rules	(10 marks)

QUESTION FIVE (20 MARKS)

(a)	What do you understand by the following terminologies			
	(i) Permutation	(2 marks)		
	(ii) Combination	(2 marks)		
(b)	A mixed hockey team containing 5 men and 6 women is to be selected from			
	7 men and 9 women. In how many ways can this be done?	(6 marks)		
(c)	Evaluate $12_{C_9} - 10_{P_7}$	(5 marks)		
(d)	How many even numbers, greater than 2000, can be formed with digits 1, 2, 4, 8,			
	if each digit may be used only once in each number?	(5 marks)		