KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MATH 110

COURSE TITLE: BASIC MATHEMATICS

- STREAM: SESSION I
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 12/08/2010

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Expand $\frac{1}{(2+x)^2}$ in ascending powers of x, as far as the term in x^3 using Binomial theorem. (6 marks)
- (b) Derive the formula of sum of Arithmetic progression (A.P) given that 1^{st} term is "a" and n^{th} term is L = a + (n 1)d. Hence find the sum of all the terms in a sequence.

$$1, -3/2, -4, ----, -49$$
 (12 marks)

- (c) Prove that $\sqrt{2}$ is irrational number. (4 marks)
- (d) Using Vern's diagram show $(A \cap B)^1 = A^1 \cup B^1$ (4 marks)
- (e) Solve the equation $sin(x + 15^\circ) cos(x 15^\circ) = 0.5$ for value of x from 0° to 360° inclusive. (4 marks)

QUESTION TWO (20 MARKS)

- (a) Using truth table show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (7 marks)
- (b) Prove that $\sin 3A = 3 \sin A 4 \sin^3 A$. (7 marks)
- (c) Use mathematical induction to prove that $1^2 + 2^2 + - - - - + n^2 = \frac{1}{6}n(n+1)(2n+1)$ (6 marks)

QUESTION THREE (20 MARKS)

(a)	Differentiate between permutation and combination.	(3 marks)
(b)	In how many ways can r objects be chosen from n unlike objects?	(5 marks)
(c)	In how many different ways can the word Mississippi be written without rep	etition? (4 marks)
(d)	In how many ways can committee of 4 be chosen from 4 girls and 5 boys if t must have at most 2 girls.	he committee (5 marks)
(e)	A mixed hockey team containing 5 men and 6 women is to be chosen from 7	men and 9
	women. In how many ways can this be done?	(3 marks)

QUESTION FOUR (20 MARKS)

- (a) Let f(x) = x + 5 and g(x) = x + 2 (i) $f \circ g$ (2 marks)

 (i) $g \circ f$ (2 marks)

 (ii) $g \circ f$ (2 marks)

 (iii) $\{f(x)g(x)\}^{-1}$ (4 marks)
- (b) Derive the sum of the G.Ps given 1^{st} term is a and common ratio is r. Hence find the smallest number of terms of the G.P 8 + 24 + 72 + - -, that will give a total greater than 6,000,000? (7 marks)

(c) If $\sin(x + \alpha) = \cos(x - \beta)$ find $\tan x$ in terms of \propto and β . (5 marks)

QUESTION FIVE (20 MARKS)

- (a) How many permutation are there of r objects chosen from n unlike objects? (7 marks)
- (b) How many even numbers greater than 50,000 can be formed with digits 3, 4, 5, 6, 7, 0 without repetitions. (7 marks)

(c) Show that
$$\frac{p}{q} + \sqrt{2}\frac{n}{m}$$
 is irrational. (6 marks)