

EXAMINATIONS 2008/2009 ACADEMIC YEAR

 FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCECOURSE CODE: MATH 110
COURSE TITLE: BASIC MATHEMATICS
STREAM: Y1S1
DAY: WEDNESDAYTIME:DATE:12/08/2009
INSTRUCTIONS:
Answer Question ONE and any other TWO Questions.
PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Consider the following logical equivalence summarized below and draw the truth table to extract to the logical conclusion.

$$
\begin{equation*}
(p \rightarrow q) \wedge(q \rightarrow p)=p \Leftrightarrow q \tag{4marks}
\end{equation*}
$$

(b) Write the general term(s) of the following sequences
(i) $\left\{\frac{1}{2}, 2, \frac{1}{3}, 2, \frac{1}{2}, 2---\right\}$
(ii) $\left\{1,2, \frac{1}{3}, 4, \frac{1}{5}---\right\}$
(iii) $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}---\right\}$
(6 marks)
(c) Prove by mathematical induction that $1^{2}+2^{2}+3^{2}+---+n^{2}=\frac{1}{6}\{n(n+1)(2 n+1)\}$ (4 marks)
(d) Use the Venn's diagrams to illustrate.
(i) $\quad(A \cap B)^{1}$
(3 marks)
(ii) $(A \cup B)^{1}$
(3 marks)
(e) Prove that $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is irrational.
(5 marks)
(f) What is the smallest number of terms of the geometrical progression $8+24+72+--$, that will give a total greater than $6,000,000$?

QUESTION TWO (20 MARKS)

(a) The general geometrical progression is given by $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2},-----, \mathrm{ar}^{\mathrm{n}-1}$
(i) Derive the equation of getting the sum of G.P's.
(7 marks)
(ii) In a geometrical progression the sum of the second and third terms is 6 and the of third and fourth terms is $\mathbf{- 1 2}$. Find the first term and common ratio.
(7 marks)
(iii) Using the concept of infinite progressions express $0 \cdot \dot{7}$ as a fraction in the lowest form.
(b) Evaluate $\frac{(n+5)!}{(n+2)!}$
(2 marks)

QUESTION THREE (20 MARKS)

(a) Using the truth tables prove;
(i) $(A \cup B)^{1}=A^{1} \cap B^{1}$
(ii) $(A \cap B)^{1}=A^{1} \cup B^{1}$
(b) A ball is dropped from a certain height first bounce takes $2 / 3$ of the time of the previous bounce.
Find;
(i) Total time for the first 4 bounces
(3 marks)
(ii) Total time until bouncing stops
(c) Show that between two rational numbers there is an irrational number.
(5 marks)

QUESTION FOUR (20 MARKS)

(a) Prove the identify $\sin 3 A=3 \sin A-4 \sin ^{3} A$
(7 marks)
(b) In how many ways can a team of 5 pupils be formed so as to include at least one boy from a population of 3 boys and 4 girls?
(c) Use binomial theorem to find the coefficient of X^{6} in the expansion $(3 x-2)^{15}$
(2 marks)
(d) How many even numbers greater than 50,000 be formed with the digits 3, 4, 5, 6, 7, 0 without repetition.

QUESTION FIVE (20 MARKS)

(a) Prove that $n_{C_{r}}=\frac{n!}{(n-r)!r!}$
(8 marks)
(b) Solve the equation $1+\cos \theta=2 \sin ^{2} \theta$ for values of θ between 0° and $360^{\circ} .(6$ marks)
(c) Find $f^{-1}(x)$, Given $f(x)=2 x^{2}+4 x+2$
(d) In how many ways can the letters of the word BESIEGE be arranged?

