KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE:	MATH 110
COURSE TITLE:	BASIC MATHEMATICS
STREAM:	Y1S1
DAY:	WEDNESDAY
TIME:	9.00 – 11.00 A.M.

DATE: 12/08/2009

INSTRUCTIONS:

Answer Question **ONE** and any other **TWO** Questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Consider the following logical equivalence summarized below and draw the truth table to extract to the logical conclusion.

$$(p \to q) \land (q \to p) = p \iff q$$
 (4 marks)

(b) Write the general term(s) of the following sequences

(i)	$\left\{\frac{1}{2}, 2, \frac{1}{3}, 2, \frac{1}{2}, 2\right\}$	
(ii)	$\left\{1, 2, \frac{1}{3}, 4, \frac{1}{5}\right\}$	
(iii)	$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$	(6 marks)

(c) Prove by mathematical induction that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6} \{n \ (n+1)(2n+1)\}$ (4 marks)

(d) Use the Venn's diagrams to illustrate.

(i)
$$(A \cap B)^1$$
(3 marks)

(ii)
 $(A \cup B)^1$
(3 marks)

- (e) Prove that $\frac{m}{n} + \sqrt{2}\frac{p}{q}$ is irrational. (5 marks)
- (f) What is the smallest number of terms of the geometrical progression 8 + 24 + 72 + ---, that will give a total greater than 6,000,000? (5 marks)

QUESTION TWO (20 MARKS)

(a)	The ge	neral geometrical progression is given by a, ar, ar^2 ,, ar^{n-1}	
	(i)	Derive the equation of getting the sum of G.P's.	(7 marks)
	(ii)	In a geometrical progression the sum of the second and third ter	ms is 6
		and the of third and fourth terms is -12 . Find the first term and	common ratio.
			(7 marks)
	(iii)	Using the concept of infinite progressions express $0.\dot{7}$ as a fract	ion in the
		lowest form.	(4 marks)
		(n + 5)!	

(b) Evaluate
$$\frac{(n+5)!}{(n+2)!}$$
 (2 marks)

QUESTION THREE (20 MARKS)

- (a) Using the truth tables prove;
 - (i) $(A \cup B)^1 = A^1 \cap B^1$ (5 marks) (ii) $(A \cap B)^1 = A^1 \cup B^1$ (5 marks)

(b) A ball is dropped from a certain height first bounce takes 2/3 of the time of the previous bounce.

Find;

(i)	Total time for the first 4 bounces	(3 marks)
(ii)	Total time until bouncing stops	(2 marks)

(c) Show that between two rational numbers there is an irrational number. (5 marks)

QUESTION FOUR (20 MARKS)

(a)	Prove the identify $\sin 3A = 3 \sin A - 4 \sin^3 A$	(7 marks)
(b)	In how many ways can a team of 5 pupils be formed so as to include at least	one boy
	from a population of 3 boys and 4 girls?	(3 marks)
(c)	Use binomial theorem to find the coefficient of X^6 in the expansion $(3x - 2)$	$2)^{15}$
(d)	How many even numbers greater than 50,000 be formed with the digits 3, 4	(2 marks) , 5, 6, 7, 0
	without repetition.	(8 marks)

QUESTION FIVE (20 MARKS)

(a)	Prove that $n_{C_r} = \frac{n!}{(n-r)! r!}$	(8 marks)
(b)	Solve the equation $1 + \cos \theta = 2\sin^2 \theta$ for values of θ between 0° and 3	60°.(6 marks)
(c)	Find $f^{-1}(x)$, Given $f(x) = 2x^2 + 4x + 2$	(4 marks)

(d) In how many ways can the letters of the word BESIEGE be arranged? (2 marks)