KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MATH 110

- COURSE TITLE: BASIC MATHEMATICS
- STREAM: SESSION I
- DAY: THURSDAY
- TIME: 9.00- 11.00 A.M.
- DATE: 13/08/2009

INSTRUCTIONS:

Answer Question **ONE** and any other **TWO** Questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Write the general term(s) of the following sequences

(i)	$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$	
(ii)	$\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4},\right\}$	
(iii)	$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$	(6 marks)

- (b) Show that $\sqrt{2}$ is an irrational number.
- (c) Given two propositional forms $p \cap (q \cup r)$ and $(P \cap q) \cup (p \cap r)$, show the relationship of the two, by use of a truth table (4 marks)

(7 marks)

- (d) Prove that $A B = (A \cap B)^1$ (5 marks)
- (e) Write short notes on the following;

(i) Universal set	(2 marks)
(ii) Disjointed sets	(2 marks)
(iii) Empty set	(2 marks)

QUESTION TWO (20 MARKS)

(a) By use of mathematical induction prove that (5 marks)

$$\sum_{j=1}^{n} j^3 = \frac{n^2(n+1)^2}{4}$$

- (b) State and prove the De'morgans laws by
 - (i) Use of reasoning technique (5 marks)
 - (ii) Boolean logic (5 marks)

(c) Show that $\tan \frac{p}{q} + \sqrt{2} \frac{r}{5}$ is irrational. (5 marks)

QUESTION THREE (20 MARKS)

(a) There are 3 boys and 4 girls at a party. In how many ways can a team of 5 pupils be formed so as to include at least one boy. (4 marks)

(b) Prove the following;

(i)
$$\frac{\cos\theta\sin^2\theta + \cos^3\theta}{\sin\theta} = \frac{1}{\tan\theta}$$
 (2 marks)

(ii)
$$\sin 3A = 3 \sin A - 4 \sin^3 A$$
 (8 marks)

(iii)
$$\cos^2 x + \sin^2 x = 1$$
 (6 marks)

QUESTION FOUR (20 MARKS)

(a)	Using the Boolean logics show that the digital circuit $a \cdot (b + c) = a \cdot b + a \cdot c$ works	
		(6 marks)
(b)	Write short notes on the following;	
	(i) Closure by addition	(2 marks)
	(ii) Closure by multiplication	(2 marks)
(c)	By using concept of G.P series	
	(i) Derive a formula of sum to infinity	(4 marks)
	(ii) Express 0. $\ddot{45}$ and 0.07 in lowest form.	(6 marks)

QUESTION FIVE (20 MARKS)

(a)	Derive;	
	(i) Sum of the G.P	(5 marks)
	(ii) Sum of the A.P	(5 marks)
(b)	Given $f(x) = 2x^2 - 6x + 8$. Find $f^{-1}(x)$	(5 marks)
(c)	Prove that $\sqrt{8}$ is irrational.	(5 marks)