UNIVERSITY EXAMINATIONS
2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN
ECONOMICS AND MATHEMATICS AND BACHELOROF COMPUTER SCIENCE
COURSE CODE: MATH 110
COURSE TITLE: BASIC MATHEMATICS
STREAM: Y1S1
DAY: FRIDAY
TIME: 2.00-4.00 P.M.DATE:06/08/2010
INSTRUCTIONS:Attempt question ONE and any other TWO questions.
PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Find the sum of n terms of the series $2 \times 3+3 \times 4+4 \times 5+$ \qquad
The $\mathrm{m}^{\text {th }}$ term of the series is $(\mathrm{m}+1)(\mathrm{m}+2)$ or $m^{2}+3 m+2$
(5 marks)
(b) Write in the \sum notation.
(i) $2 \times 7+3 \times 8+4 \times 9+5 \times 10+6 \times 11$

> (2 marks)
(ii) $1+\frac{2}{3}+\frac{3}{9}+\frac{4}{27}+\frac{5}{81}$
(c) Show that $\sqrt{8}$ is irrational number.
(d) Consider the following logical equivalence summarized below and draw the truth table to extract the logical conclusion. $(p \rightarrow q) \Lambda(q \rightarrow p)=p \Leftrightarrow q$
(e) Use binomial theorem to expand $\frac{1}{1-x}$ in ascending powers of x, as far as the term in x^{3}.
(f) Using reasoning technique show that $A-B=A \cap B^{1}$

QUESTION TWO (20 MARKS)

(a) Find the sum of n terms of the series $2 \times 3+3 \times 4+4 \times 5+\cdots---$ The $^{\text {th }}$ term of the series is $(m+1)(m+2)$ or $m^{2}+3 m+2$
(b) Derive the sum of G.P and hence evaluate the smallest number of terms of the series $8+24+72+-----$, that will give a total greater than $6,000,000$.
(10 marks)
(c) Derive the sum to infinity hence express as fraction in their lowest terms; $0 \ddot{45}$ (4 marks)

QUESTION THREE (20 MARKS)

(a) Prove the identify $\cos ^{2} A-\cos ^{2} B=\sin (A+B) \sin (B-A)$
(b) Solve the equation $\cos 6 x+\cos 4 x+\cos 2 x=0$ for values of x from 0° to 180° inclusive.
(5 marks)
(c) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle prove that

$$
\cos A+\cos B+\cos C-1=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
$$

(10 marks)

QUESTION FOUR (20 MARKS)

(a) Use mathematical induction to prove $1^{2}+2^{2}+---+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ (6 marks)
(b) In how many ways can a committee of 5 be formed from 6 boys and 7 girls if the committee must have at least 1 girl?
(c) By use of truth table show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(d) Find the coefficient of x^{10} in the expansion of $(2 x-3)^{20}$

QUESTION FIVE (20 MARKS)

(a) Let $f(x)=x+2 \quad g(x)=(x+3)$

Find
(i) $f o g$
(ii) $g o f$
(2 marks)
(iii) $\{f o g\}^{-1}$
(2 marks)
(2 marks)
(b) Using Booleen logic prove that the digital circuit $a \cdot(b+c)=a \cdot b+a \cdot c$ works.
(4 marks)
(c) State and prove De'morgans theorems. (Use truth tables)

