KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS AND BACHELOR

OF COMPUTER SCIENCE

COURSE CODE: MATH 110

COURSE TITLE: BASIC MATHEMATICS

- STREAM: Y1S1
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/08/2010

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Find the sum of n terms of the series $2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$ The mth term of the series is (m + 1) (m + 2) or $m^2 + 3m + 2$ (5 marks)
- (b) Write in the \sum notation.
 - (i) 2 X 7 + 3 X 8 + 4 X 9 + 5 X 10 + 6 X 11 (2 marks) (ii) $1 + \frac{2}{3} + \frac{3}{9} + \frac{4}{27} + \frac{5}{81}$ (2 marks)
- (c) Show that $\sqrt{8}$ is irrational number. (8 marks)
- (d) Consider the following logical equivalence summarized below and draw the truth table to extract the logical conclusion. $(p \rightarrow q)\Lambda(q \rightarrow p) = p \Leftrightarrow q$ (5 marks)
- (e) Use binomial theorem to expand $\frac{1}{1-x}$ in ascending powers of x, as far as the term in x^3 . (4 marks)
- (f) Using reasoning technique show that $A B = A \cap B^1$ (4 marks)

QUESTION TWO (20 MARKS)

- (a) Find the sum of n terms of the series $2 \times 3 + 3 \times 4 + 4 \times 5 + \cdots$ The mth term of the series is (m + 1)(m + 2) or $m^2 + 3m + 2$ (6 marks)
- (b) Derive the sum of G.P and hence evaluate the smallest number of terms of the series $8 + 24 + 72 + \dots$, that will give a total greater than 6,000,000. (10 marks)
- (c) Derive the sum to infinity hence express as fraction in their lowest terms; 045 (4 marks)

QUESTION THREE (20 MARKS)

- (a) Prove the identify $\cos^2 A \cos^2 B = \sin(A + B)\sin(B A)$ (5 marks)
- (b) Solve the equation $\cos 6x + \cos 4x + \cos 2x = 0$ for values of x from 0° to 180° inclusive. (5 marks)

(c) If A, B, C are the angles of a triangle prove that

$$\cos A + \cos B + \cos C - 1 = 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$
 (10 marks)

QUESTION FOUR (20 MARKS)

(a) Use mathematical induction to prove $1^2 + 2^2 + - - - + n^2 = \frac{1}{6}n(n+1)(2n+1)$ (6 marks)

(b) In how many ways can a committee of 5 be formed from 6 boys and 7 girls if the committee must have at least 1 girl? (5 marks)
(c) By use of truth table show that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (6 marks)

(d) Find the coefficient of x^{10} in the expansion of $(2x - 3)^{20}$ (3 marks)

QUESTION FIVE (20 MARKS)

(a)	Let $f(x) = x + 2$ Find		g(x) = (x+3)	
	(i)	fog		(2 marks)
	(ii)	gof		(2 marks)
	(iii)	$\{fog\}^{-1}$		(2 marks)

(b) Using Booleen logic prove that the digital circuit $a \cdot (b + c) = a \cdot b + a \cdot c$ works.

(c) State and prove De'morgans theorems. (Use truth tables)(4 marks)(10 marks)