

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF PRE-UNIVERSITY CHEMISTRY

COURSE CODE: PCHEM 021

COURSE TITLE: BASIC ORGANIC CHEMISTRY

STREAM: SEMESTER TWO

DAY: THURSDAY

TIME: 9.00 - 11.00 A.M.

DATE: 12/08/2010

INSTRUCTIONS:

- Answer all questions: (70 % Marks)

PLEASE TURN OVER

- 1. (a) Define the following terms used in organic chemistry:
 - (i) Hydrocarbons (ii) Isomer
- (iii) Alkyl group
- (iv) Halogenation

(v) Unsaturated hydrocarbons.

- (2.5 marks)
- (b) Draw the shapes of the following compounds: (i) Methane (ii) Ethene
 - (iii) Ethyne.

- (3 marks)
- (c) (i) Explain why alkanes, alkenes and alkynes have generally low boiling points and melting points compared to other organic compounds?
 - (ii) CH₃CH₂CH₂CH₃ and CH₃-CH-CH₃ CH₃

are isomers of butane, which one will have higher boiling point? Explain your answer. (6 Marks)

- (d) (i) What does "Cis" and "Trans" means?
 - (ii) Draw the Cis and Trans structures for the compound 2,3-dibromo-2-butene. (6 Marks)
- 2. (a) Write structural formulas for the Isomers of an alkene with general formula C_5H_{10} (3.5 marks)
 - (b) Give the IUPAC names for the following compounds of Hydrocarbons:

(7.5 marks)

(iv)
$$CH_3$$
-C-CH- CH_2 -CH₃

(v) H_2 C— CH — CH_3
 H_2 C— CH_2
 H_2 C— CH_2

- (c) . Write the structures for the each of the following compounds:
 - (i) 5- methyl-2-hexene (ii) cyclobutene (iii) 2,4,5-trimethyl-5-nitro-2-heptene.

Write the structural formula for each of the following compounds:

- (a) 1-bromo-4,5-dimethyl-2-hexyne (b) 4-nitro-hep-2-yne. (7.5 marks)
- 3.(a) Give the missing Reactant(s) / Product(s) / Reagent(s) in the following reaction equations: (7 Marks)

(i)
$$CH_3CH_3$$
 \longrightarrow $A + B$

(ii) C +
$$Cl_2$$
 UV-light CH₃Cl + HCl

(iii)
$$CH_3CH_2CH_2OH \xrightarrow{H_2SO_4/heat} D + H_2O$$

- (b) (i) Explain why CH₃CH₂CH₂OH has a higher boiling point than CH₃CH₂CH₂CH₃?
 - (ii) Write the structures and IUPAC names for all possible isomers of an alcohol with the following formula C₄H₉OH?
 - (iii) Write the structures of the following alcohols: (i) 2- butanol
 - (ii) 2- methyl- 2-propanol (iii) cyclohexanol. (10.5 marks)

4. (a) Name the following ethers and Amines:

(6 marks)

- (i) CH_3 -O- CH_2 C H_3
- (ii)

- (iii) O—CH₂CH₃
- (iv) CH₃CH₂-N-CH₃
- (v) NH₂
- (vi) NH₂
- (b) Write the structures of the following aldehydes and ketones:
 - (i) 2-methylbutanal (ii) benzaldehyde (iii) 2-pentanone
 - (iv) 3-methoxyhexane

(4 marks)

- (c) (i) Explain why carboxylic acids have higher boiling point than alcohols?
 - (ii) Write structures for the following acids: 2-methylpropanoic acid,
 - 3- bromobutanoic acid and p-nitrobenzoic acid
 - (iii) Complete the following reactions by giving the missing reactant or product or reagent:

$$CH_3OOH + A \longrightarrow CH_3OONa + H_2$$

$$\mathbf{B} + \text{Na}_2\text{CO}_3 \longrightarrow \text{C}_6\text{H}_5\text{COONa} + \mathbf{C} + \text{H}_2\text{O}$$

(7.5 Marks)