

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 113
COURSE TITLE: CALCULUS I
STREAM: SESSION I
DAY:
TIME:
2.00-4.00 P.M.

DATE:
14/04/2011

INSTRUCTIONS:
$\ddot{\mathrm{y}}$ Attempt question ONE and any other TWO questions

QUESTION ONE (30MARKS)

(a) Given $=$ deduce the product Rule.
(b) (i) Find $\lim _{x \rightarrow \infty}$
(ii) Find $\lim _{x \rightarrow} \longrightarrow$
(c) Use first principles to find the derivative of
(i) $\quad()=6$
(ii) $\quad()=$
(d) Show that =

$$
\mathrm{x} \rightarrow
$$

(e) Find the equation of the line which passes through the point $(5,3)$ and is parallel to the tangent to the curve, $=$ at the point $(3,9)$
(f) Differentiate the following functions:
(i) $\quad=(-5)(x-)=1$
(ii)

QUESTION TWO (20 MARKS)

(a) Use the first principles to find the derivative of: $=\cos$.
(8 marks)
(b) For the function defined by $=2-15+19$, Find the stationary points and distinguish between them.
(c) If $=+\quad+\quad+\quad=1$

QUESTION THREE (20 MARKS)

(a) A particle moves along a straight line in such a way that its distance from a fixed point o on the line after t seconds is S meters, where $=-\quad$ Find;
$\begin{array}{lll}\text { (i) } & \text { Its velocity after } 3 \text { seconds and after } 4 \text { seconds } & \text { (3 marks) } \\ \text { (ii) } & \text { Its acceleration after } 2 \text { seconds and after } 4 \text { seconds } & \text { (3 marks) }\end{array}$
(b) Find the equation of the normal to the curve $=+3$ at the point where $=1$
(c) Find - , given that ()$=+2+3$
(d) Evaluate $\operatorname{Lim} \rightarrow \infty$ +

QUESTION FOUR (20 MARKS)

(a) Find - and - if $+2+4=0$ at a point $(1,1)$ (15 marks)
(b) A 2% error is made in measuring the radius of a sphere. Find the percentage error in surface area.

QUESTION FIVE (20MARKS)

(a) Differentiate the following:
(i) $=(+2+1)$
(3marks)
(ii) $=2$ (3 marks)
(b) Find - when $=1=-$ and $=3-1$ marks)
(c) Find the equation of the curve given the gradient is 4-2 and the curve passes through point (1,2)
(4marks)
(d) evaluate $\lim \rightarrow$ -

