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KABARAK             UNIVERSITY 
      

 

      EXAMINATIONS 

2008/2009 ACADEMIC YEAR 

FOR THE DEGREE OF BACHELOR OF SCIENCE IN 

COMPUTR SCIENCE  

COURSE CODE:  MATH 113 

COURSE TITLE:  CALCULUS I 

STREAM:  Y1S1 

DAY:   WEDNESDAY 

TIME:    9.00 – 11.00 A.M. 

DATE:   12/08/2009        
 

 

INSTRUCTIONS: 

Attempt question ONE and any other TWO questions. 

 

 

 

 

 

 

 

 

 

 

 

 

PLEASE TURN OVER 
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QUESTION ONE   (30MKS) 

(a) Evaluate the following limits 

(i) 
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       (3mks) 
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       (4mks) 

 

(iv)     
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        (4mks) 

 

 

(b) Find 
dx

dy
 of the following functions from first principles 

  

 (i) y = 4x
2
 + 2x + 2       (3mks) 

 (ii) y = 2+x         (3mks) 

 

(c)  Let  Ax
n

→lim  and .lim By
n

→    Then show that      
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QUESTION TWO   (20MKS) 

(a) Using the ε - δ definition of limits show that  10222

2
=++

→
xxLim

x
 and evaluate the  

value of  δwhen ε = 0.1 at x  = 5     (8mks) 

 

(b) Find 
dx

dy
 of the following functions       (6mks) 

 

 (i)     ( )
coxxx

xSiny
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2=        (4mks) 
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(ii) y = ( ) ( )733 532 +⋅− xxx       (6mks) 

 

(iii) y = 3 3 242 ++ xx        (2mks) 

 

(iv)  y = ( )223 24 ++ xxLn        (3mks) 

 

 

 

QUESTION THREE    (20MKS) 

(a) Find 1y  given 
axax

axax

ee

ee
y

−

−
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+
=        (6mks) 

 

(b) Find 11y  given xey x 3sin2−=       (5mks) 

 

(c) Find 1y  and 11y  given 3334 =++ yxyx  at the point (1, 1)  (8mks) 

 

 

 

QUESTION FOUR    (20MKS) 

(a) Given that  xxSinxy +=
− 21

2ln   Find 
dx

dy
     (5mks) 

 

(b) Determine and distinguish the stationary points of the curve;    296 23 ++−= xxxy   

and hence state the local extrema.      (7mks) 

 

(c) Evaluate the following explaining every step. 

 

(i) 
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 (ii) 
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(iii)    
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QUESTION FIVE    (20MKS) 

(a) Prove ( )
dx

ud
V

dx

vd
uuv

dx

d )()(
+=       (8mks) 

  

 (b) Given  
x

x
y

cos
= , hence or otherwise  prove that  .02

2

2

=++ xy
dx
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dx
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x  (7mks) 

 

(c) Evaluate dx
x

x
∫ +15

3

2

        (3mks) 

            

 

(d) Determine whether axax BaAey −+=  is satisfied by 0211 =− yay   (2mks) 

            

 


