UNIVERSITY EXAMINATIONS

2007/2008 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I
STREAM: Y1S1
DAY:
WEDNESDAY
TIME:
8.30 - 10.30 A.M

DATE:
23/04/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO Questions
2. Show ALL your workings.

QUESTION ONE (30 MARKS) COMPULSORY

(a) Give 4 examples of functions used in real life
(b) Find the domain and range of the following functions
(i) $\mathrm{f}(\mathrm{x})=\sqrt{4+x}$
(ii) $f(x)=\log \left(\frac{1}{4-x}\right)$
(c) Evaluate the following limits
(i) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x+1}$
(ii) $\lim \left(2 x^{2}-3 x+4\right)$
$x \rightarrow 5$
(iii) if $f(x)= \begin{cases}\sqrt{x-4} & \text { if } x \geq 4 \\ 8-2 x & \text { if } x<4\end{cases}$

Determine whether $\lim f(x)$ exists

$$
x \rightarrow 4
$$

(d) Find the constant a so that the following function is continuous

$$
f(x)= \begin{cases}x^{2} & x>2 \\ a x+1 & x \leq 2\end{cases}
$$

(e) From first principle (or using limits) find the derivative of
(i) $f(x)=\cos x$
(ii) $f(x)=\left(\frac{1}{2 x+2}\right)$
(f) Differentiate with respect to x the following
(i) $f(x)=x^{2} e^{2(x+3)}$
(ii) $\mathrm{f}(\mathrm{t})=\left(\frac{2 x}{4+x^{2}}\right)$
(iii) $\mathrm{f}(\mathrm{t})=\tan ^{-1} 2 \mathrm{x}$

QUESTION TWO (20 MARKS)

(a) (i) State Rolle's theorem
(3 mks)
(ii) State the mean value theorem
(b) Sketch the curve $y=x^{2}-4 x+3$
(c) Using L hospital rule, calculate

$$
\text { (i) } \operatorname{Lim}_{x \rightarrow \infty} \frac{\operatorname{In} x}{\sqrt[3]{x}}
$$

(ii) $\operatorname{Lim}_{x \rightarrow \infty} \frac{\tan x-x}{x^{3}}$

QUESTION THREE (20 MKS)

(a) Find the derivatives of
(i) $f(x)=e^{x} \operatorname{In}(x+2)$
(3 mks)
(ii) $y=3 x-x^{2}+\log _{2} x$
(3 mks)
(b) Find $\operatorname{Lim}_{x \rightarrow 1} \frac{\sqrt{x^{2}+2}-3}{x-1}$ (5 mks)
(c) Let $y^{2}-4 x y+4 x-1=0$ give the equation of a graph. Find the equation of the tangent line to this graph at the point $(1,3)$
(d) Evaluate
(i) $\int_{0}^{1}(x+1)^{2} d x$
(2 mks)
(ii) $\int(4 x+6)^{3} d x$
(2 mks)

QUESTION FOUR (20 MARKS)

(a) Differentiate with to x
(i) $f(x)=\sin (4 x+3)$
(3 mks)
(ii) $\mathrm{f}(\mathrm{x})=\frac{x^{2}}{\operatorname{In} x^{2}}$
(3 mks)
(b) A lader 10 fit zone rests against a vertical wall. If the bottom of the ladder slides away form the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft form the wall.
(6 mks)
(c) From first principle (using limits), find the derivative of

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x} \tag{5mks}
\end{equation*}
$$

(d) $f(x)=4 x$

QUESTION FIVE (20 MARKS)

(a) (i) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=6 x y \quad \quad$ (5 mks)
(ii) Find the tangent to the following equation $x^{3}+y^{3}=6 x y$ at the point $(3,3)$
(2 mks)
(iii) At what points on the curve is the tangent line horizontal?
(3 mks)
(b) Given $\mathrm{f}(\mathrm{x})=\frac{1}{x}$, find $\mathrm{f}^{-}(\mathrm{x})$
(4 mks)
(c) Find the area under the curve $y=x^{2}-3 x+4$ and the $x-a x i s \quad$ (4 mks)
(d) The profit function of a product is given by $p(x)=(100-x) x-28 x-54$. Find the maximum profit of the product.
(4 mks)

