

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I
STREAM: SESSION I
DAY:
TUESDAY
TIME:
2.00 - 4.00 P.M.

DATE:
07/04/2009

INSTRUCTIONS:

Answer QUESTION ONE and ANY OTHER TWO questions.

Question One (30mks)
(a) Prove that the limit of the sequence.
$\mathrm{Xn}=\frac{2 n}{3 n-1}$ is $\frac{2}{3}$ as $\mathrm{n} \rightarrow \infty$. Hence
Find the values of N if (i) $\quad \in=0.03$
(ii) $\in=0.002$
(iii) $\in=0.0001$
(b) Using the first principle method find the gradients of the function at the specified point.
(i) $\mathrm{y}=4 \mathrm{x}+8 \quad$ at $\mathrm{x}=0$
(3mks)
(ii) $\mathrm{y}=\frac{1}{x^{2}} \quad$ at $\mathrm{x}=-2$
(iii) $Y=\sqrt{4 X+4} \quad$ at $\mathrm{x}=1$
(3mks)
(3mks)
(c) Evaluate the following limits.
(i) $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$
(2mks)
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n^{2}+n}{n+2}$
(2mks)
(iii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{Cos}-\operatorname{Cos} 3 x}{x^{2}}$
(2mks)
(d) Find the derivatives $\frac{d y}{d x}$ of the following functions.
(i) $y=\sqrt{x^{2}+2 x+4}$
(2mks)
(ii) $y=x^{2}\left(2 x^{2}+x+3\right)^{-2}$
(3mks)

Question Two (20mks)
(a) An object starts from rest and gains an acceleration by $a(t)=6 t$. What is velocity and distance at $\mathrm{t}=7$ seconds?
(b) Find y^{1} given $y+2 x y-1+y^{2}=0$
(c) Find the equations of the tangent and normal lines to the curve $y=2 x^{2}+4 x-3$ at the point where $x=1$
(d) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{\tan 6 x}{8 x}$
(4mks)

Question Three (20mks)
(a) Show that:
(i) $\frac{d}{d x} \operatorname{Sin} \mathrm{x}=\operatorname{Cos} \mathrm{x}$
(4mks)
(ii) $\frac{d}{d x} \operatorname{Cos} \mathrm{x}=-\operatorname{Sin} \mathrm{x}$
(4mks)
(b) Differentiate the following functions w.r.t x
(i) $\mathrm{y}=\frac{e^{-a x}+e^{a x}}{e^{a x}}$
(4mks)
(ii) $y=\operatorname{Cos}^{2}\left(4 x^{2}\right)+\operatorname{Sin}^{3} 2 x$
(3mks)
(c) Evaluate the following Limit

$$
\begin{equation*}
\operatorname{Lim}_{x \rightarrow-\infty}\left(1+\frac{3}{x}\right)^{x+4} \tag{5mks}
\end{equation*}
$$

Question Four (20mks)

(a) Using first principle method differentiate $\left(\frac{d y}{d x}\right)$ $y=4 X^{2}+2 X+4$
(b) Investigate the local extrema of the function.
$f(x)=2 x^{3}-3 x^{2}-12 x+10$
(5mks)
(c) The gradient of a curve is $6 x-3$. Find the equation of the curve given $x-$ axis is a tangent to the curve.
(4mks)
(d) Find $\frac{d y}{d x}$ when $\mathrm{x}=1$ of $\mathrm{y}=\frac{u}{u+1}$ and $\mathrm{u}=3 \mathrm{x}^{2}-1$

Question Five (20mks)
(a) Using $\in-\delta$ definition of a limit verify the following Limit.

$$
\operatorname{Lim}_{x \rightarrow 2}\left(x^{3}+x+1\right)=11
$$

(b) Differentiate w.r.t.x

$$
\begin{array}{lll}
& \text { (7mks) } \\
\text { (i) } & y=e^{x^{2}} & (2 \mathbf{m k s}) \\
\text { (ii) } & y=\operatorname{Sin}(4 x+5) & (3 \mathbf{m k s}) \\
\text { (iii) } & y=\operatorname{Ln}^{2}(x+4) & (3 m k s)
\end{array}
$$

(c) Evaluate the following limits
(i) $\operatorname{Lim}_{x \rightarrow 25} \frac{\sqrt{x}-1}{x+1}$
(3mks)
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{5 n^{2}+5 n-2}{3 n^{3}+6 n^{2}}$
(2mks)

