KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

- COURSE CODE: MATH 113
- COURSE TITLE: CALCULUS I
- STREAM: Y1S2
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 26/03/2009

INSTRUCTIONS:

Answer **<u>QUESTION ONE</u>** and **<u>ANY OTHER TWO</u>** questions.

PLEASE TURN OVER

Question One (30mks)

(a) Evaluate the following units

(i)
$$\lim_{x \to \infty} \frac{(x-6)^{20} (3x+2)^9}{(4x^2-3)^{15}}$$
 (3mks)

(ii)
$$\lim_{n \to \infty} \frac{n^2 + 4n + 3}{3n^2 + 7}$$
 (2mks)

(iii)
$$\lim_{x \to \infty} \frac{x^2 - 4}{(x - 2)(x - 1)}$$
 (2mks)

(iv)
$$\lim_{x \to 0} \frac{\cos x - \cos 3x}{x^2}$$
 (3mks)

(b) Find $\frac{dy}{dx}$ of the following functions from the first principles (i) $y = 3x^2 + 2x + 1$ at x = 1 (3mks)

(ii)
$$y = \frac{1}{x^2}$$
 at $x = 2$ (3mks)

(c) Let
$$\lim_{x \to \infty} x_n = A$$
 and $\lim_{x \to \infty} y_n = B$ then show that
(i) $\lim_{x \to \infty} x_n + y_n = A + B$ (3mks)
(ii) $\lim_{n \to \infty} x_n y_n = A \cdot B$ (3mks)

(d) Using ε - δ definition of limits show that;

$$\lim_{x \to 1} 2x^2 + 4x + 7 = 13$$

Hence evaluate the value of δ when

(i)
$$\epsilon = 0.1$$
 at $x = 1$
(ii) $\epsilon = 0.03$ at $x = 2$ (8mks)

Question Two (20mks)

(a) Find
$$\left(\frac{dy}{dx}\right)$$
 of the following functions
(i) $y = (2x^2 + 4)(x^4 + 2x + 3)$ (3mks)
(ii) $y = (6x^2 + 2x + 4)^{10}$ (2mks)

(iii)
$$2x^2y + 4xy + x + 8 = 0$$
 (4mks)

(b) Evaluate the following limits

(i)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x+4}$$
 (3mks)
(ii) $\lim_{x \to 0} \frac{\sin x + \cos x}{x^2}$ (4mks)

(c) Verify that
$$\lim_{x \to 1} 2x^2 + 4 + 2 = 8$$
 (4mks)

Question Three (20mks)

(a) Find
$$\left(\frac{dy}{dx}\right)$$
 of the following functions
(i) $y = \sin 3x$ (3mks)

(ii) $y = \cos 4x + \sin 3x$ (3mks)

(iii) $y = e^x \sin^2 x + 4\cos x$ (3mks)

(iv)
$$y = \frac{e^{ax} + e^{-ax}}{e^{x}}$$
 (4mks)

(b) From first principles show that I

$$\frac{d}{dx}(\cos x) = -\sin x \tag{7mks}$$

Question Four (20mks)

(a) Prove that the limit of the sequence $X_n = \frac{3n}{2n-1}$ is $\frac{3}{2}$ as $n \to \infty$

stating the values of N such that n>N we shall have the inequality $\left|x_n - \frac{3}{2}\right| < \varepsilon$ valid for any

arbitrary $\varepsilon > 0$ then find the values of N if

(i)
$$\varepsilon = 0.03$$

(ii) $\varepsilon = 0.003$ (10mks)

(b) (i) Find the velocity and acceleration at the time t = 2 for a particle moving in a straight line if its motion obeys the law

$$S = t^3 + 5t^2 + 4$$
 (4mks)

(ii) When is the particle stationary? (3mks)

(c) Find
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
 (3mks)

Question Five (20mks)

- (a) Write the equations of tangent and normal to the curve $x^3 y^2 2xy = 0$ at a point (1, 2) (5mks)
- (b) Determine whether $y = A\cos ax + B\sin ax$ satisfies $y^{11} + a^2 y = 0$ (5mks)
- (c) Investigate the local extrema of the curve $y = 2x^2 + 6x + 2$ (5mks)
- (d) Find the area enclosed by the curve $y = x^2 16$ (5mks)