UNIVERSITY EXAMINATIONS

 2010/2011 ACADEMIC YEARFOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 113
COURSE TITLE: CALCULUS I
STREAM: SESSION I
DAY:
FRIDAY
TIME:
2.00-4.00 PM

DATE:
26/11/2010

INSTRUCTIONS:

> Answer question $\underline{\mathbf{O N E}}$ and any other TWO questions

QUESTION ONE (30MKS)
(a) Prove that the limit of the sequence.
$\mathrm{Xn}=\frac{2 n}{3 n-1}$ is $\frac{2}{3}$ as $\mathrm{n} \rightarrow \infty$. Hence
Find the values of N if (i) $\in=0.01$
(ii) $\epsilon=0.001$
(iii) $\in=0.0001$
(6mks)
b)Show that $\operatorname{Lim} x^{2}=a^{2}$
(5 mks)

$$
\mathrm{x} \rightarrow a
$$

(c) Evaluate the following limits.
(i) $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$
(3mks)
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n^{2}+n}{n+2}$
(3mks)
(iii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{Cos}-\operatorname{Cos} 3 x}{x^{2}}$
(3mks)
(d) Find the derivatives $\frac{d y}{d x}$ of the following functions.
(i) $y=\sqrt{x^{2}+2 x+4}$
(2mks)
(ii) $y=x^{2}\left(2 x^{2}+x+3\right)^{-2}$
(3mks)

QUESTION TWO (20MKS)

(a) An object starts from rest and gains an acceleration by $\mathrm{a}(\mathrm{t})=6 \mathrm{t}$. What is velocity and distance at $\mathrm{t}=7$ seconds?
(b) Find y^{1} given $y+2 x y-1+y^{2}=0$
(c) Find the equations of the tangent and normal lines to the curve $y=2 x^{2}+4 x-3$ at the point where $\mathrm{x}=1$
(d) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{\tan 6 x}{8 x}$

QUESTION THREE (20MKS)

(a) Using $\in-\delta$ definition of a limit verify the following Limit.

$$
\operatorname{Lim}_{x \rightarrow 2}\left(x^{3}+x+1\right)=11
$$

(b) Differentiate w.r.t.x

> (i) $y=e^{x^{2}}$
> (ii) $y=\operatorname{Sin}(4 x+6)$
> (iii) $y=\operatorname{Ln}^{2}(x+3)$
(c) Evaluate the following limits
(i) $\operatorname{Lim}_{x \rightarrow 25} \frac{\sqrt{x}-1}{x+1}$
(3mks)
(ii) $\underset{n \rightarrow \infty}{\operatorname{Lim}} \frac{4 n^{2}+5 n-2}{2 n^{3}+3 n^{2}}$
(2mks)

QUESTION FOUR (20MKS)

(a) Compute $\int\left(\frac{x^{2}}{5 x^{3}+1}\right) \mathrm{dx}$ (5mks)
(b) Investigate the local extrema of the function.
$f(x)=2 x^{3}-3 x^{2}-12 x+5$
(5mks)
(c) The gradient of a curve is $6 x-3$. Find the equation of the curve given $x-a x i s$ is a tangent to the curve.
(d) Using first principle method differentiate $\left(\frac{d y}{d x}\right)$ $y=\log _{a} X$

QUESTION FIVE (20MKS)

(a) Show that:
(i) $\frac{d}{d x} \operatorname{Sin} \mathrm{x}=\operatorname{Cos} \mathrm{x}$
(4mks)
(ii) $\frac{d}{d x} \operatorname{Cos} \mathrm{x}=-\operatorname{Sin} \mathrm{x}$
(b) Differentiate the following functions w.r.t x
(i) $\mathrm{y}=\frac{e^{-a x}+e^{a x}}{e^{a x}}$
(ii) $y=\operatorname{Cos}^{2}\left(4 x^{2}\right)+\operatorname{Sin}^{3} 2 x$
(3mks)
(c) Evaluate the following Limit

$$
\begin{equation*}
\operatorname{Lim}_{x \rightarrow-\infty}\left(1+\frac{3}{x}\right)^{x+4} \tag{5mks}
\end{equation*}
$$

