UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I
STREAM: \quad SESSION I \& III
DAY: THURSDAY
TIME: $\quad 9.00-11.00$ A.M
DATE: 25/11/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Differentiate the following function from first principles, $f(\mathrm{x})=\frac{1}{x+1}$
(b) Use differential to find the approximate value of $(33)^{2 / 5}$.
(c) Evaluate the following limits
(i) $\lim \frac{x^{3}}{\left(1+x^{3}\right)}$

$$
\mathrm{x} \rightarrow \infty
$$

(2 mks)
(ii) $\lim \frac{\operatorname{Sin} 2 \chi}{\chi^{2}+x}$

$$
\begin{equation*}
\chi \rightarrow 0 \tag{2mks}
\end{equation*}
$$

(d) Differentiate the following functions with respect to χ
(i) $\mathrm{y}=9^{x}$
(3 mks)
(ii) $y=\tan \left(\cos x^{2}\right)$
($\mathbf{3} \mathbf{~ m k s)}$
iii) $y=\sin ^{-1} \frac{\chi-3}{\chi+3}$
(4 mks)
(e) i) State two conditions for a function $\mathrm{f}(\chi)$ to be continuous at a point $\chi=a$
(i) Let $\mathrm{f}(\mathrm{x})=\left(\begin{array}{cc}\left.\frac{x^{3}-4}{x-2}\right) & \chi \neq 2 \\ 3 & \chi=2\end{array}\right.$

Show that $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=2$. What value should $\mathrm{f}(\mathrm{x})$ have in order to be continuous at $\mathrm{x}=2$?

QUESTION TWO (20 MARKS)

(a) Find the value of the stationary point of

$$
f(\mathrm{x})=\frac{\chi}{\chi^{2}+2}
$$

(13 mks)
(b) Find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(1,1)$ on the curve $3 x y+y^{2}-x-y=0$
(7 marks)

QUESTION THREE (20 MKS)

(a) Given the parametric equations

$$
x=\frac{a t}{1-t^{2}} \quad y=\frac{a t^{2}}{1-t} \quad \text { find } \frac{d y}{d x} \text { in terms of } \mathrm{t} .
$$

(b) Given that $\mathrm{y}=$ in $\sqrt{\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)}}$ show that $\frac{d y}{d x}=\frac{-2 x}{\left(1-x^{4}\right)}$
(c) Given that $\mathrm{y}=e^{-2 t} \cos 3 \mathrm{t}$ show that $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+13 \mathrm{y}=0$

QUESTION FOUR (20 MKS)

(a) Find the equations of the tangent and normal to the curve $y=e^{-3 x}+5 x-5$ at the point $(0,4)$.
(7 mks)
(b) A particle moving in a straight line is a distance s metres from a fixed point after t seconds, where $S=t^{3}-4 t^{2}+5 t$.
Find an expression for the speed V and the acceleration, a, after t seconds. For what values of t in the particle stationary and what is the acceleration at these times.
(8 mks)
(c) i) State the Rolle's Theorem
ii) Let $f(x)=\chi^{2 / 3}$ on $(-8,27)$. Show that the Mean Value Theorem fails.
(5 mks)

QUESTION FIVE (20 MARKS)

(a) The average value of a function f over the interval (a, b) is given by

$$
\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

Determine the average value of the function $f(x)=x^{2}+3 x+1$ over the interval $(-1,1)$.
(b) Find the indefinite integrals
i) $\int 3 x \sqrt{3 x^{2}}+7 d x$
ii) $\int \frac{x}{x^{2}+a^{2}} d x$
(c) Evaluate the definite integrals
(i)

$$
\int_{0}^{\pi} 3 \sin x d x
$$

(ii) $\int_{0}^{4}(2 x+1) \sqrt{x^{2}}+x d x$
(iii) $\int_{0}^{\pi / 4} \sin ^{3} 2 x \cos 2 x d x$

