KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: MATH 113
- COURSE TITLE: CALCULUS I
- **STREAM:** SESSION I & III
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M
- DATE: 25/11/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question **ONE** and any other **TWO** Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Differentiate the following function from first principles, $f(x) = \frac{1}{x+1}$ (4 mks)
- (b) Use differential to find the approximate value of $(33)^{\frac{2}{5}}$. (5 mks)
- (c) Evaluate the following limits

(i)
$$\lim_{x \to \infty} \frac{x^3}{(1+x^3)}$$
 (2 mks)

(ii)
$$\lim_{\chi \to 0} \frac{\sin 2\chi}{\chi^2 + x}$$
 (2 mks)

(d) Differentiate the following functions with respect to $\boldsymbol{\chi}$

(i) $y = 9^x$ (3 mks)

(ii)
$$y = \tan(\cos x^2)$$
 (3 mks)

iii)
$$y = \sin^{-1} \frac{\chi - 3}{\chi + 3}$$
 (4 mks)

(e) i) State two conditions for a function $f(\chi)$ to be continuous at a point $\chi = a$

(2 mks)

(i) Let
$$f(x) = \left(\frac{x^3 - 4}{x - 2}\right)$$
 $\chi \neq 2$
3 $\chi = 2$

Show that f (x) is discontinuous at x=2. What value should f (x) have in order to be continuous at x = 2? (5 mks)

QUESTION TWO (20 MARKS)

(a) Find the value of the stationary point of

$$f(\mathbf{x}) = \frac{\chi}{\chi^2 + 2}$$
(13 mks)

(b) Find the values of
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at the point (1,1) on the curve $3xy + y^2 - x - y = 0$
(7 marks)

OUESTION THREE (20 MKS)

(a) Given the parametric equations

$$x = \frac{at}{1-t^2}$$
 $y = \frac{at^2}{1-t}$ find $\frac{dy}{dx}$ in terms of t.

(b) Given that
$$y = in \sqrt{\frac{(1-x^2)}{(1+x^2)}}$$
 show that $\frac{dy}{dx} = \frac{-2x}{(1-x^4)}$

(c) Given that
$$y = e^{-2t} \cos 3t$$
 show that $\frac{d^2 y}{dt^2} + 4 \frac{dy}{dt} + 13y = 0$

QUESTION FOUR (20 MKS)

- (a) Find the equations of the tangent and normal to the curve $y = e^{-3x} + 5x 5$ at the point (0, 4). (7 mks)
- (b) A particle moving in a straight line is a distance s metres from a fixed point after t seconds, where $S = t^3 4t^2 + 5t$. Find an expression for the speed V and the acceleration, a, after t seconds. For what values of t in the particle stationary and what is the acceleration at these times.

(8 mks)

- (c) i) State the Rolle's Theorem
 - ii) Let $f(x) = \chi^{\frac{2}{3}}$ on (-8, 27). Show that the Mean Value Theorem fails. (5 mks)

QUESTION FIVE (20 MARKS)

(a) The average value of a function f over the interval (a,b) is given by

$$\frac{\int_{a}^{b} f(x) dx}{b - a}$$

Determine the average value of the function $f(x) = x^2 + 3x + 1$ over the interval (-1,1). (5 mks)

(b) Find the indefinite integrals

i)
$$\int 3x \sqrt{3x^2} + 7 dx$$

ii)
$$\int \frac{x}{x^2 + a^2} dx$$
 (6 mks)

(c) Evaluate the definite integrals

(i)
$$\int_{0}^{\pi} 3\sin x \, dx$$

(ii) $\int_{0}^{4} (2x+1)\sqrt{x^{2}} + x \, dx$

(iii)
$$\int_0^{\pi/4} \sin^3 2x \cos 2x \, dx$$
 (9 marks)