

DAY:

TUESDAY

TIME:
2.00-4.00 P.M.

DATE:
10/08/2010

INSTRUCTIONS:

$>$ Attempt question ONE and any other TWO Questions

QUESTION ONE (30MKS)

(a) Given $y=u v$ deduce the product Rule.
(3mks)
(b) (i) Find $\operatorname{Lim}_{x \rightarrow \infty} \frac{2 x^{2}-2}{3 x^{2}-3 x+2}$
(3mks)
(ii) Find $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-\cos 3 x}{x^{2}}$
(c) Use first principles to find the derivative of

$$
\begin{array}{ll}
\text { (i) } & f(x)=6 x \\
\text { (ii) } & f(x)=e^{x}
\end{array}
$$

(d) Show that $\operatorname{Lim}_{x \rightarrow a} x^{2}=a^{2}$
(e) Find the equation of the line which passes through the point $(5,3)$ and is parallel to the tangent to the curve, $y=x^{2}$ at the point $(3,9)$
(f) Differentiate the following functions:
(i) $\mathrm{y}=\left(\mathrm{x}^{2}-5\right)\left(\mathrm{x}-\mathrm{x}^{3}\right)$ at $x=1$
(3mks)
(ii) $\mathrm{y}=\frac{3 x^{2}-5}{1-x^{3}}$
(3mks)

QUESTION TWO (20MKS)

(a) Use the first principles to find the derivative of:

$$
\begin{equation*}
y=\cos x . \tag{8mks}
\end{equation*}
$$

(b) For the function defined by $y=2 x^{3}-15 x^{2}+24 x+19$, find the stationary points and distinguish between them.
(6 mks)
(c) If $x=t^{3}+t^{2}$ and $y=t^{2}+t$ find $\frac{d y}{d x}$ at $t=1$
(6mks)

QUESTION THREE (20MKS)

(a) A particle moves along a straight line in such a way that its distance from a fixed point o on the line after t seconds is S meters, where $\mathrm{S}=\frac{1}{6} t^{4}$. Find;
(i) Its velocity after 3 seconds and after 4 seconds
(3mks)
(ii) Its acceleration after 2 seconds and after 4 seconds
(3mks)
(b) Find the equation of the normal to the curve $y=x^{2}+3 x$ at the point where $x=1$
(c) Find $\frac{d y}{d x}$, given that $f(x)=x y+2 x+3$
(5mks)
(d) Evaluate $\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{2+x}$
(3mks)

QUESTION FOUR (20MKS)

(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if $x^{2} y+2 y^{3}+4 x=0$ at a point $(1,1)$
(b) A 2% error is made in measuring the radius of a sphere. Find the percentage error in surface area.
(5mks)

QUESTION FIVE (20MKS)

(a) Differentiate the following:
(i) $y=\ln ^{2}\left(x^{2}+2 x+1\right)^{2}$
(3mks)
(ii) $y=\operatorname{Sin}^{3} 2 x$
(3mks)
(b) Find $\frac{d y}{d x}$ when $\mathrm{x}=1$ of $\mathrm{y}=\frac{u}{u+1}$ and $\mathrm{u}=3 \mathrm{x}^{2}-1$
(8mks)
(c) Find the equation of the curve given the gradient is $4 \mathrm{x}-2$ and the curve passes through point $(1,2)$
(d) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$

