

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I

STREAM: SESSION I

DAY: TUESDAY

TIME: 2.00 - 4.00 P.M.

DATE: 10/08/2010

INSTRUCTIONS:

➤ Attempt question **ONE** and any other **TWO** Questions

QUESTION ONE (30MKS)

- Given y = uv deduce the product Rule. (a) (3mks)
- Find $\lim_{x \to \infty} \frac{2x^2 2}{3x^2 3x + 2}$ (b) (i) (3mks)
 - Find $\lim_{x\to 0} \frac{\sin x \cos 3x}{x^2}$ (ii) (3mks)
- Use first principles to find the derivative of (c)
 - f(x) = 6x(3mks)
 - $f(x) = e^x$ (ii) (3mks)
- (d) Show that $\lim_{x\to a} x^2 = a^2$ (3mks)
- (e) Find the equation of the line which passes through the point (5, 3) and is parallel to the tangent to the curve, $y = x^2$ at the point (3, 9) (3mks)
- (f)
- Differentiate the following functions: (i) $y = (x^2 5) (x x^3)$ at x = 1(3mks)
 - (ii) $y = \frac{3x^2 5}{1 x^3}$ (3mks)

QUESTION TWO (20MKS)

(a) Use the first principles to find the derivative of:

$$y = \cos x. (8mks)$$

For the function defined by $y = 2x^3 - 15x^2 + 24x + 19$, find the stationary points and (b) distinguish between them. (6mks)

(c) If
$$x = t^3 + t^2$$
 and $y = t^2 + t$ find $\frac{dy}{dx}$ at $t = 1$ (6mks)

QUESTION THREE (20MKS)

- (a) A particle moves along a straight line in such a way that its distance from a fixed point o on the line after t seconds is S meters, where $S = \frac{1}{6}t^4$. Find;
 - (i) Its velocity after 3 seconds and after 4 seconds (3mks)
 - (ii) Its acceleration after 2 seconds and after 4 seconds (3mks)
- (b) Find the equation of the normal to the curve $y = x^2 + 3x$ at the point where x = 1 (6mks)
- (c) Find $\frac{dy}{dx}$, given that f(x) = xy + 2x + 3 (5mks)
- (d) Evaluate $\lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^{2+x}$ (3mks)

QUESTION FOUR (20MKS)

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ if $x^2y + 2y^3 + 4x = 0$ at a point (1, 1) (15mks)

(b) A 2% error is made in measuring the radius of a sphere. Find the percentage error in surface area. (5mks)

QUESTION FIVE (20MKS)

(a) Differentiate the following:

(i)
$$y = \ln^2(x^2 + 2x + 1)^2$$
 (3mks)

(ii)
$$y = \sin^3 2x$$
 (3mks)

(b) Find
$$\frac{dy}{dx}$$
 when $x = 1$ of $y = \frac{u}{u+1}$ and $u = 3x^2 - 1$ (8mks)

(c) Find the equation of the curve given the gradient is 4x - 2 and the curve passes through point (1, 2) (4mks)

(d) Evaluate
$$\lim_{x\to 0} \frac{x^2 + x}{x}$$
 (2mks)