COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I

STREAM: SESSION I

DAY:
FRIDAY
TIME:
9.00 - 11.00 A.M.

DATE:
09/04/2010

INSTRUCTIONS:

Attempt question ONE and any other TWO Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Given that $x y=\sin ^{-1} \ln \left|2 x^{2}+x\right|$

$$
\begin{equation*}
\text { Find } \frac{d y}{d x} \tag{4marks}
\end{equation*}
$$

(b) Using the first principle method, find the gradients of the function at specified point.
(i) $y=4 x+2$ at $x=0$
(2 marks)
(ii) $y=\frac{1}{\sqrt{2 x}+4}$
at $x=1$
(3 marks)
(iii)

$$
y=e^{-2 x} \quad \text { at } x=0
$$

(2 marks)
(c) Evaluate the following limits
(i) $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$
(1 mark)
(ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\cos x-\cos 3 x}{x^{2}}$
(3 marks)
(d) Differentiate the following with respect to x
(i) $y=(x-1) \sqrt{x^{2}-2 x+2}$
(3 marks)
(ii) $\quad y=\left(\frac{x^{3}-1}{2 x^{3}+1}\right)^{4}$
(iii) $y=\frac{e^{2 x} \cos x}{\ln x}$
(3 marks)
(e) If $y=x^{2}-4 x$ and $x=\sqrt{2 t^{2}+1}$

Find $\frac{d y}{d x}$ when $t=\sqrt{2}$
(2 marks)
(f) At a given instant the radii of two concentric circles are 8 cm and 12 cm . The radius of the outer circle increases at the rate of Km / s and that of the inner circle at the rate of 2 cm / s. Find the rate of change of the area enclosed between the two circles. (3 marks)

QUESTION TWO (20 MARKS)

(a) The path of a particle moving in a straight line is given by $s=\frac{t^{3}}{3}-t^{2}-3 t+4$. Find the distance(s) and acceleration when velocity is zero.
(b) Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(-1,1)$ of the curve $x^{2} y+3 y-4=0(7$ marks $)$
(c) Find the equations of the tangent and normal lines to the curve $y=2 x^{2}+4 x-3$ at the point where $x=1$
(5 marks)
(d) Evaluate $\lim _{x \rightarrow 0} \frac{\tan 6 x}{8 x}$
(3 marks)
(e) Given that $y=\sqrt{1+\sqrt{x}}$, Find $\frac{d y}{d x}$
(2 marks)

QUESTION THREE (20 MARKS)

(a) Differentiate the following with respect to x
(i) $y=x \sqrt{1+\sqrt{4 x+2}}$
(3 marks)
(ii) $y=\frac{x \ln 2 x}{\sin x}$
(3 marks)
(iii) $y=3 x^{2} \cos x$
(3 marks)
(b) Given that $y=\frac{u^{2}+1}{u^{2}-1} \quad$ and $u=\sqrt{2 x^{3}-5} \quad$ Find $\frac{d y}{d x}$
(5 marks)
(c) Evaluate the following limits
(i) $\quad \lim _{x \rightarrow 0} \frac{x e^{2 x}+1}{x^{2}}$
(3 marks)
(ii) $\quad \lim _{x \rightarrow \infty} \frac{4 n^{2}+5 n-2}{2 n^{3}+3 n^{2}}$
(3 marks)

QUESTION FOUR (20 MARKS)

(a) Investigate the turning points of the function

$$
\begin{equation*}
f(x)=2 x^{3}-3 x^{2}+12 x+5 \tag{5marks}
\end{equation*}
$$

(b) The gradient of a curve is $6 x-3$. Find the equation of the curve given $x-$ axis is a tangent to the curve.
(4 marks)
(c) Find the slope of the curve $x=y^{2}-4 y$ at the points where it crosses the $y-$ axis.
(4 marks)
(d) A point moves in the plane according to the law $x=t^{2}+2 t$ and $y=2 t^{3}-6 t$.

Find $\frac{d y}{d x}$ where $t=0$
(e) Differentiate $y=x e^{x^{2}}$ with respect to x

QUESTION FIVE (20 MARKS)

(a) Show that;
(i) $\frac{d}{d x} \sin x=\cos x$
(4 marks)
(ii) $\frac{d}{d x} \cos x=-\sin x$
(4 marks)
(b) Differentiate the following functions with respect to x
(i) $y=\frac{e^{-a x}+e^{a x}}{e^{a x}}$
(4 marks)
(ii) $y=\cos ^{2}\left(4 x^{2}\right)+\sin ^{2} 2 x$
(3 marks)
(c) Find $\frac{d y}{d x}$ given that $y=t \ln \left(t^{2}+1\right)$ and $x=t^{2} e^{2 t}$
(5 marks)

