KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE AND BACHELOR OF ECONOMIC & MATHEMATICS

- COURSE CODE: MATH 113
- COURSE TITLE: CALCULUS I
- STREAM: Y1S2 & Y1S1
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 24/03/2010

INSTRUCTIONS:

Attempt question **ONE** and any other **TWO** Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Using first principle technique find
$$\frac{dy}{dx}$$
 of the following functions;

(i)
$$f(x) = e^{-2x}$$
 at $x = 0$ (4 marks)

(ii)
$$f(x) = 3x^3 + 2x^2 + 4x + 7$$
 at $x = 1$ (5 marks)

(b) Evaluate the following limits explaining every step:

(i)
$$\lim_{x \to \sqrt{2}} \frac{x^4 + 4}{x^2 - 2}$$
 (3 marks)

(ii)
$$\lim_{x \to \infty} \frac{x^2 - 3x + 3}{2x^2 + 4}$$
 (3 marks)

(iii)
$$\lim_{x \to 0} \frac{x^2 \sin 2x}{3x}$$
 (4 marks)

(c) Find y^1 given $y + 2xy - 1 + y^2 = 0$ (5 marks)

(d) Find the equations of the tangent and the normal lines to the curve $x^2 - y^2 = 7$ at a point (4, 3) (6 marks)

QUESTION TWO (20 MARKS)

(a) The profit P is the revenue minus the cost C. If the total revenue from selling n bicycles is $\pounds 50 \text{ n} - 0.1n^2$ and the cost of manufacturing n bicycles is $\pounds 30n + 500 - 0.025n^2$. What output will maximize profit? What is the maximum profit? (7 marks)

(b) Find
$$y^1$$
 given $y = \frac{3x^2 - 6x + 7}{4x}$ (4 marks)

(c) Give the precise, i.e.
$$\varepsilon - \delta$$
, definition of the continuity of a function. (2 marks)

(d) Use the precise definition of a limit to show that; $\lim_{x \to -1} x^3 + x + 1 = 11$ (7 marks)

QUESTION THREE (20 MARKS)

(a) Find the equation of the tangent line to the graph of $x^4 + xy^3 + y^4 = 3$ at the point (1, 1). (7 marks)

(b) Evaluate
$$\lim_{x \to -1} \frac{x+1}{x^2+4x+3}$$
 (3 marks)

(c) Find
$$y^1$$
 if $y = \sin(3x^2 + 2)^3$ (4 marks)

(d) Find y^{11} , given $y = e^{-2x} \sin 3x$ (6 marks)

QUESTION FOUR (20 MARKS)

(a)	State the coordinates and nature of the turning points on the curve	
	$y = x^3 - 5x^2 + 3x + 2$	(8 marks)

- (b) A particle is travelling along the x-axis and its position at time t is given by $x(t) = t^2 + 3t - 1$. Determine its velocity V(t) and acceleration a(t) when t = 5(4 marks)
- (c) Compute $f^{1}(x)$ at x = 1 from first principles if $f(x) = 3x^{2} + 1$ (4 marks)

(d) Given
$$f(x) = 4x^2 + 3x + 1$$
 and $g(x) = 2x - 1$, find:
(i) $(f + g)(-2)$ (2 marks)
(ii) $(f \cdot g)(-2)$ (2 marks)

QUESTION FIVE (20 MARKS)

(a)Evaluate $\int (5 \sin x - 3x^4) dx$ (3 marks)(b)Show that $\frac{d}{dx} (\cos x) = -\sin x$ (5 marks)(c)Differentiate, with respect to x, $In(\cos 3x)$ (3 marks)(d)Denomination of the denomination of the denomi

(d) Determine and distinguish the stationary points of the curve

$$y = x^3 - 6x^2 + 9x + 2$$
 (6 marks)

(e) Find the derivative of $f(x) = \sqrt[3]{x^4 + 3x^2 + 5}$ (3 marks)