

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF ECONOMICS AND

MATHEMATICS

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I
STREAM: Y1S1
DAY:
WEDNESDAY
TIME:
2.00-4.00 P.M.

DATE:
14/12/2010

INSTRUCTIONS:

$>$ Attempt question ONE and any other TWO Questions

QUESTION ONE (30MKS)

(a) (i) Using the first principle technique derive $\log _{\mathrm{a}} \mathrm{X}$
(ii) Given $y=u v$ deduce the product Rule.
(b) (i) Find $\lim _{x \rightarrow \infty} \frac{2 x^{2}-2}{3 x^{2}-3 x+2}$
(ii) Find $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-\cos 3 x}{x^{2}}$
(c) Use first principles to find the derivative of

$$
\text { (i) } \quad f(x)=6 x
$$

(ii) $\mathrm{y}=\mathrm{e}^{2 \mathrm{x}}$
(d) Show that $\operatorname{Lim}_{x \rightarrow a} x^{2}=a^{2}$
(e) Find the equation of the line which passes through the point $(5,3)$ and is parallel to the tangent to the curve, $y=x^{2}$ at the point $(3,9)$
(f) Differentiate the following functions:
(i) $\mathrm{y}=\left(\mathrm{x}^{2}-5\right)\left(\mathrm{x}-\mathrm{x}^{3}\right)$ at $x=1$
(3mks)
(ii) $\mathrm{y}=\frac{3 x^{2}-5}{1-x^{3}}$

QUESTION TWO (20MKS)

(a) Differentiate the following:
(i) $y=5 x^{3}-4 x^{2}+12 x-8$
(ii) $y=\operatorname{Sin}^{3} 2 x$
(b) Find $\frac{d y}{d x}$ when $\mathrm{x}=1$ of $\mathrm{y}=\frac{u}{u+1}$ and $\mathrm{u}=3 \mathrm{x}^{2}-1$
(8mks)
(c) Find the composite function $f\left(g(x)\right.$ where $f(u)=u^{2}+3 u+1$ and $g(x)=x+1$
(d) Find the equation of the curve given the gradient is $4 \mathrm{x}-2$ at a point $(1,2)$
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if $x^{2} y+2 y^{3}+4 x=0$ at a point $(1,1)$
(b) Show that the rational function $\mathrm{f}(\mathrm{x})=\frac{x+1}{(x-2)^{2}}$ is continuous at $\mathrm{x}=3$

QUESTION FOUR (20MKS)

(a) Use the first principles to find the derivative of:

$$
y=\operatorname{Sin} x
$$

(b) For the function defined by $y=2 x^{3}-15 x^{2}+24 x+19$, find the stationary points and distinguish between them.
(c) Differentiate the function. $\mathrm{y}=\frac{\sin x}{\cos x}$
(6mks)

QUESTION FIVE (20MKS)

(a) Differentiate the following:
(i) $y=\ln ^{2}\left(x^{2}+2 x+1\right)^{2}$
(3mks)
(ii) $y=\operatorname{Sin}^{3} 2 x$
(3mks)
(b) Find $\frac{d y}{d x}$ when $\mathrm{x}=1$ of $\mathrm{y}=\frac{u}{u+1}$ and $\mathrm{u}=3 \mathrm{x}^{2}-1$
(8mks)
(c) Find the equation of the curve given the gradient is $4 \mathrm{x}-2$ and the curve passes through point $(1,2)$
(d) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}+x}{x}$
(2mks)

