KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF ECONOMICS AND

MATHEMATICS

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I

- STREAM: Y1S1
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 14/12/2010

INSTRUCTIONS:

> Attempt question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

QUESTION ONE (30MKS)

(a) (i) Using the first principle technique derive $\log_{a}x$	(3 mks)
--	---------

(ii) Given y = uv deduce the product Rule. (3mks)

(b) (i) Find
$$\lim_{x \to \infty} \frac{2x^2 - 2}{3x^2 - 3x + 2}$$
 (3mks)

(ii) Find
$$\lim_{x \to 0} \frac{\sin x - \cos 3x}{x^2}$$
 (3mks)

(c) Use first principles to find the derivative of
(i)
$$f(x) = 6x$$
 (3mks)
(ii) $y=e^{2x}$ (3mks)

(d) Show that
$$\lim_{x \to a} x^2 = a^2$$
 (3mks)

(e) Find the equation of the line which passes through the point (5, 3) and is parallel to the tangent to the curve, $y = x^2$ at the point (3, 9) (3mks)

(f) Differentiate the following functions:
(i)
$$y = (x^2 - 5) (x - x^3)$$
 at $x = 1$ (3mks)
(ii) $y = \frac{3x^2 - 5}{1 - x^3}$ (3mks)

QUESTION TWO (20MKS)

- (a) Differentiate the following:
 - (i) $y = 5x^3 4x^2 + 12x 8$ (1mks)

(ii)
$$y = \sin^3 2x$$
 (5mks)

(b) Find
$$\frac{dy}{dx}$$
 when $x = 1$ of $y = \frac{u}{u+1}$ and $u = 3x^2 - 1$ (8mks)

(c) Find the composite function
$$f(g(x)$$
 where $f(u) = u^2 + 3u + 1$ and $g(x) = x + 1$
(4mks)

(d) Find the equation of the curve given the gradient is
$$4x - 2$$
 at a point (1, 2)
(2mks)

QUESTION THREE (20MKS)

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ if $x^2y + 2y^3 + 4x = 0$ at a point (1, 1) (15mks)

(b) Show that the rational function $f(x) = \frac{x+1}{(x-2)^2}$ is continuous at x = 3 (5mks)

QUESTION FOUR (20MKS)

(a) Use the first principles to find the derivative of:

$$y = Sin x$$
 (8mks)

- (b) For the function defined by $y = 2x^3 15x^2 + 24x + 19$, find the stationary points and distinguish between them. (6mks)
- (c) Differentiate the function. $y = \frac{\sin x}{\cos x}$ (6mks)

QUESTION FIVE (20MKS)

(a) Differentiate the following:

(i)
$$y = \ln^2 (x^2 + 2x + 1)^2$$
 (3mks)

(ii)
$$y = \sin^3 2x$$
 (3mks)

- (b) Find $\frac{dy}{dx}$ when x = 1 of y = $\frac{u}{u+1}$ and u = $3x^2 1$ (8mks)
- (c) Find the equation of the curve given the gradient is 4x 2 and the curve passes through point (1, 2) (4mks)

(d) Evaluate
$$\lim_{x \to 0} \frac{x^2 + x}{x}$$
 (2mks)