KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS AND BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I

STREAM: Y1S1

- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 12/08/2010

INSTRUCTIONS:

> Attempt question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

(a)

Using the precise definition of limits show that

$$\lim_{n \to \infty} \left\{ \frac{(-1)^n}{n} \right\} \to 0 \text{ where } n \in N. \quad \text{Hence evaluate } N(\in) \text{ when}$$
(i) $\varepsilon = 0.01$
(ii) $\varepsilon = 0.03$
(iii) $\varepsilon = 0.001$
(6 marks)

(b) Explaining every step evaluate the following limits

(i)
$$\lim_{n \to \infty} \frac{n^2 - 4n + 7}{2n^2 + 4}$$
 (2 marks)

(ii)
$$\lim_{x \to 0} \frac{m\sqrt{1+ax} - n\sqrt{1+bx}}{x}$$
 (2 marks)

(iii)
$$\lim_{x \to \infty} \frac{(x-3)^{40} (5x+6)^{10}}{(3x^2-6)^{25}}$$
 (2 marks)

(iv)
$$\lim_{x \to 0} \frac{x^x \sin 2x}{3x}$$
 (2 marks)

(c) From the first principles find
$$\frac{dy}{dx}$$
 of the following functions;

(i)
$$f(x) = \frac{1}{x^2}$$
 (3 marks)
(ii) $f(x) = \sqrt{x+2}$ (3 marks)

(d) Let
$$\lim_{n\to\infty} X_n \to A$$
 and $\lim_{n\to\infty} y_n \to B$ Show that
(i) $\lim_{n\to\infty} x_n + y_n = A + B$ (5 marks)
(ii) $\lim_{n\to\infty} x_n y_n = A \cdot B$ (5 marks)

QUESTION TWO (20 MARKS)

(a)	Find y' and y'' given $y = \frac{e^{ax} + e^{-ax}}{e^{ax} - e^{-ax}}$	(6 marks)
(b)	Find y'' given $y = e^{-2x} \sin 3x$	(5 marks)
(c) (d)	Find y' and y'' given $x^4 + xy^3 + y^3 = 3$ at the point (1, 1) Show that $\lim_{x \to 2} x^2 + 2x + 2 = 10$	(5 marks) (4 marks)

QUESTION THREE (20 MARKS)

- (a) A particle moves along a straight line in such away that its distance from a fixed point on the line after t seconds is S meters, where $S = \frac{1}{6}t^4$. Find;
 - (i) Its velocity after 3 seconds and 4 seconds
 - (ii) Its acceleration after 2 seconds and 4 seconds (5 marks)
- (b) A ball was thrown upwards with a velocity of 40 m/s. Find
 - (i) The acceleration, velocity and distance expressions.
 - (ii) The maximum height the ball can attain (strictly use calculus techniques)

(6 marks)

- (c) The volume of a cylindrical tank is $16\pi mls$. Find the radius of the tank if the area has to be least. (5 marks)
- (d) A 100 meter wire mesh was provided to fence a rectangular plot. Find the maximum area it can enclose by mesh without any loss. (4 marks)

QUESTION FOUR (20 MARKS)

(a) Use the first principle to find
$$\frac{dy}{dx}$$
 of the following functions

(i)
$$y = \sin x$$
 (4 marks)

(ii)
$$y = \cos x$$
 (4 marks)

- (b) Given $y = 2x^3 15x^2 + 24x + 19$ find the stationary points. (4 marks)
- (c) Differentiate the following functions. (i) $y = \sin^3 2x$ (2 marks) (ii) $y = \frac{Tan^2 e^x \{\cos x\}}{r^2}$ (2 marks)

(d) Evaluate (i)
$$\lim_{x \to \infty} \left\{ \frac{(3x+1)}{3x-2} \right\}^{2x}$$
 (2 marks)

(ii)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{x^2}$$
 (2 marks)

QUESTION FIVE (20 MARKS)

(a) Given
$$y = \frac{\cos x}{x}$$
, prove that $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$ (7 marks)

(b) Evaluate
$$\int \frac{x^2}{5x^2+1} dx$$
 (5 marks)

(c) Determine whether
$$y = Ae^{ax} + Be^{-ax}$$
 is satisfied by $y'' - a^2y = 0$ (3 marks)

(d) Find the equation of the curve given the gradient is
$$4x - 2$$
 and $x - axis$ is the tangent.
(5 marks)