UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS AND BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 113

COURSE TITLE: CALCULUS I

STREAM: Y1S1

DAY:
THURSDAY
TIME:
2.00-4.00 P.M.

DATE: $\quad 12 / 08 / 2010$

INSTRUCTIONS:
> Attempt question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Using the precise definition of limits show that $\lim _{n \rightarrow \infty}\left\{\frac{(-1)^{n}}{n}\right\} \rightarrow 0$ where $n \in N$. Hence evaluate $N(\in)$ when
(i) $\varepsilon=0.01$
(ii) $\varepsilon=0.03$
(iii) $\varepsilon=0.001$
(6 marks)
(b) Explaining every step evaluate the following limits
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n^{2}-4 n+7}{2 n^{2}+4}$
(ii) $\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+a x}-\sqrt[n]{1+b x}}{x}$
(iii) $\lim _{x \rightarrow \infty} \frac{(x-3)^{40}(5 x+6)^{10}}{\left(3 x^{2}-6\right)^{25}}$
(iv) $\lim _{x \rightarrow 0} \frac{x^{x} \sin 2 x}{3 x}$
(2 marks)
(c) From the first principles find $\frac{d y}{d x}$ of the following functions;
(i) $f(x)=\frac{1}{x^{2}}$
(ii) $f(x)=\sqrt{x+2}$
(3 marks)
(d) Let $\lim _{n \rightarrow \infty} X_{n} \rightarrow A$ and $\lim _{n \rightarrow \infty} y_{n} \rightarrow B \quad$ Show that
(i) $\quad \lim _{n \rightarrow \infty} x_{n}+y_{n}=A+B$
(5 marks)
(ii) $\lim _{n \rightarrow \infty} x_{n} y_{n}=A \cdot B$

QUESTION TWO (20 MARKS)

(a) Find y^{\prime} and $y^{\prime \prime}$ given $y=\frac{e^{a x}+e^{-a x}}{e^{a x}-e^{-a x}}$
(6 marks)
(b) Find $y^{\prime \prime}$ given $y=e^{-2 x} \sin 3 x$
(c) Find y^{\prime} and $y^{\prime \prime}$ given $x^{4}+x y^{3}+y^{3}=3$ at the point $(1,1)$
(d) Show that $\lim _{x \rightarrow 2} x^{2}+2 x+2=10$

QUESTION THREE (20 MARKS)

(a) A particle moves along a straight line in such away that its distance from a fixed point on the line after t seconds is S meters, where $S=\frac{1}{6} t^{4}$. Find;
(i) Its velocity after 3 seconds and 4 seconds
(ii) Its acceleration after 2 seconds and 4 seconds
(5 marks)
(b) A ball was thrown upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$. Find
(i) The acceleration, velocity and distance expressions.
(ii) The maximum height the ball can attain (strictly use calculus techniques)
(6 marks)
(c) The volume of a cylindrical tank is $16 \pi \mathrm{mls}$. Find the radius of the tank if the area has to be least.
(5 marks)
(d) A 100 meter wire mesh was provided to fence a rectangular plot. Find the maximum area it can enclose by mesh without any loss.
(4 marks)

QUESTION FOUR (20 MARKS)

(a) Use the first principle to find $\frac{d y}{d x}$ of the following functions
(i) $y=\sin x$
(4 marks)
(ii) $y=\cos x$
(4 marks)
(b) Given $y=2 x^{3}-15 x^{2}+24 x+19$ find the stationary points.
(c) Differentiate the following functions.
(i) $y=\operatorname{Sin}^{3} 2 x$
(ii) $y=\frac{\operatorname{Tan}^{2} e^{x}\{\cos x\}}{x^{2}}$
(d) Evaluate (i) $\operatorname{Lim}_{x \rightarrow \infty}\left\{\frac{(3 x+1)}{3 x-2}\right\}^{2 x}$
(ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$

QUESTION FIVE (20 MARKS)

(a) Given $y=\frac{\cos x}{x}$, prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+x y=0$

> (7 marks)
(b) Evaluate $\int \frac{x^{2}}{5 x^{2}+1} d x$ (5 marks)
(c) Determine whether $y=A e^{a x}+B e^{-a x}$ is satisfied by $y^{\prime \prime}-a^{2} y=0$ (3 marks)
(d) Find the equation of the curve given the gradient is $4 x-2$ and x - axis is the tangent.

