KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 121

- COURSE TITLE: CALCULUS II
- STREAM: SESSION I
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 30/11/2009

INSTRUCTIONS:

- 1. Answer Question **ONE** and any other **TWO** Questions
- 2. Show ALL your workings.

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

a)
$$\int_0^2 10x^2 + 10 \, dx$$
 (4 mks)

(b) Integrate the following functions

(i)
$$\int \left(3\sqrt[4]{x^3} + \frac{7}{x^5} + \frac{1}{6\sqrt{x}}\right) dx$$
 (3 mks)

(ii)
$$\int (x^8 + x^{-8}) dx$$
 (3 mks)

(iii)
$$\int \cos\frac{x}{2} dx$$
 (2 mks)

(c) Solve the following by substitution method

(i) $\int \tan\theta \, \mathrm{d}\theta$

(ii)
$$\int \frac{1}{\sqrt{1-x^2}} dx$$
 (3 mks)

(d) Evaluate $\int in x dx$ (3 mks)

- (e) Find the area of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ (3 marks)
- (f) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the x-axis is resolved about the x-axis to generate a solid. Find its volume. (3 mks)

(g) Evaluate
$$\int_{0}^{1} \int_{y}^{1} (3 - x - y) \, dx \, dy$$
 (3 mks)

QUESTION TWO (20 MARKS)

(a) Evaluate I, m,
$$n + \int_0^{\frac{N}{2}} \cos^m \theta \sin^n \theta d\theta$$
 (15 mks)

(b) Integrate the following by substitution method

$$\int x^2 \operatorname{Sinx^3dx}$$
(5 mks)

QUESTION THREE (20 MKS)

(a) Integrate the following by parts

(i)
$$\int x^4 e^{\frac{x}{2}} dx$$
 (6 mks)

(ii)
$$\int \cos^2 x \, dx$$
 (6 mks)

(b) Evaluate
$$\int \frac{(x-1)^2}{\sqrt{x+4}} dx$$
 (5 mks)

(c) Find
$$\frac{df}{dy}$$
 if $f(x_1y) = y \sin xy$ (3 mks)

QUESTION FOUR (20 MKS)

(a) Evaluate I=
$$\int \frac{x dx}{(x=2)^2 (x-1)}$$
 (8 mks)

(b) Evaluate $\int_0^{0.8} \sqrt{1+x^2} dx$ using n=4 by	
(i) Trapexium Rule	(4 mks)
(ii) Simpson's Rule	(4 mks)
() $\mathbf{\Gamma}$ 1/1 0^2 1	

(c) Find the area enclosed by
$$y = 2x^2 + 10$$
 and $y = 4x + 16$ (4 mks)

QUESTION FIVE (20 MARKS)

(a) Evaluate
$$\int \sin^5 x dx$$
 (8 mks)

(b) Evaluate
$$\int \frac{3x+11}{x^2 - x - 6} \, \mathrm{d}x \tag{6 mks}$$

(c) If $f(x_y) = 3x^2 + x^3y + 4y^2$ find

(i)
$$\frac{df}{dx}$$
 (ii) $\frac{df}{dy}$ (iii) $\frac{d^2f}{dx^2}$ (6 mks)