

DAY:

TIME:
9.00-11.00 A.M.

DATE:
10/04/2010

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Begin each question on a separate page
3. Show your workings clearly and neatly.

QUESTION ONE (30 MARKS) COMPULSORY

(a)
i) $\int 3 e^{x}+5 \cos x-10 \sec ^{2} x d x$ (4 mks)
ii) $\int 2 \sec w \tan w+\frac{1}{6 w} d w$ (4 mks)
(b) Use the simpsons Rule with $\mathrm{n}=4$ to estimate $\int_{0}^{1} 5 x^{4} d x$ and compare with exact value of the integral
(c) Evaluate the following integrals by substitution method
(i) $\int \cos (4 x+5) d x$
(iii) $\int x e^{-x^{2}} \mathrm{dx}$
(d) Integrate $\int x^{4} e^{\frac{x}{2}} \mathrm{dx}$ by parts
(e) (e) Find the area of the region enclosed by $y=x^{2}$ and $y=\sqrt{x}$
(f) Determine the volume of the solid obtained by rotation the region bounded by $y=\sqrt[3]{x} \quad x=8 \quad$ and the x -axis about the x -axis

QUESTION TWO (20 MARKS)

(a) Integrate the following by parts
(i) $\int e^{\theta} \cos \theta d \theta$
(ii) $\int w^{2} \sin (10 w) d x$
(b) Evaluate $\int \frac{x^{2}-29 x+5 d x}{(x-4)^{2}\left(x^{2}+3\right)}$
(c) Find $\frac{d f}{d y}$ if $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{y} \sin \mathrm{x} \mathrm{y}$

QUESTION THREE (20 MARKS)

(a) Determine the reduction formula for $\mathrm{I}_{\mathrm{m}}=\int \cos ^{m} x d x$

Use the result to determine I_{7}
(10 marks)
(b) Approximate $\int_{0}^{2} \frac{1}{x^{2}+1}$ with $\mathrm{n}=4$ using
(i) Trapezoidal Rule
(5 mks)
(ii) Simpson's Rule

QUESTION FOUR (20 MARKS)

(a) Evaluate $\int \frac{1}{2 x^{2}-12 x+21} d x$
(b) Evaluate the following integrals
(i) $\int 3 x^{2} \sqrt{x+4} d x$
(ii) $\int \sqrt{\tan x} \sec ^{2} x d x$

QUESTION FIVE (20 MARKS)

(a) Determine the area of the region bounded by $y=2 x^{2}+10, y=4 x+16, x=-2$ and $x=5$
(b) Find the length of the curve $\mathrm{y}=\left(\left(\frac{x}{2}\right)^{\frac{2}{3}}\right.$ from $\mathrm{x}=0$ to $\mathrm{x}=2$ (5 mks)
(c) Evaluate the following
(i) $\int \cos ^{5} \theta d \theta$ (8 mks)
(ii) $\int \cos ^{2} \theta d \theta$

