KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: MATH 121
- COURSE TITLE: CALCULUS II
- STREAM: SESSION II
- DAY: SATURDAY
- TIME: 9.00 11.00 A.M.

DATE: 10/04/2010

INSTRUCTIONS:

- 1. Answer question ONE and any other TWO questions
- 2. Begin each question on a separate page
- 3. Show your workings clearly and neatly.

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) i)
$$\int 3e^x + 5\cos x - 10\sec^2 x dx$$
 (4 mks)

ii)
$$\int 2\sec w \tan w + \frac{1}{6w} dw$$
 (4 mks)

- (b) Use the simpsons Rule with n=4 to estimate $\int_{0}^{1} 5x^{4} dx \text{ and compare with exact value of the integral} \qquad (4 \text{ mks})$ (c) Evaluate the following integrals by substitution method (i) $\int \cos(4x+5) dx$ (3 mks) (iii) $\int xe^{-x^{2}} dx$ (3 mks) (d) Integrate $\int x^{4}e^{\frac{x}{2}} dx$ by parts (4 mks)
- (e) (e) Find the area of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ (4 mks)

(f) Determine	the volu	ne of the solid obtained by ro	otation the region bounded by	
$y = \sqrt[3]{x}$	x = 8	and the x-axis about the x-a	xis	(4 mks)

QUESTION TWO (20 MARKS)

(a)	Integrate the following by parts	
	(i) $\int e^{\theta} \cos \theta d\theta$	(6 mks)
	(ii) $\int w^2 \sin(10w) dx$	(6 mks)
(b)	Evaluate $\int \frac{x^2 - 29x + 5dx}{(x-4)^2(x^2+3)}$	(5 mks)

(c) Find
$$\frac{df}{dy}$$
 if $f(x,y) = y\sin xy$ (3 mks)

QUESTION THREE (20 MARKS)

(a) Determine the reduction formula for
$$I_m = \int \cos^m x dx$$

Use the result to determine I_7 (10 marks)

(b) Approximate
$$\int_{0}^{2} \frac{1}{x^{2}+1}$$
 with n = 4 using
(i) Trapezoidal Rule (5 mks)
(ii) Simpson's Rule (5 mks)

QUESTION FOUR (20 MARKS)

(a) Evaluate
$$\int \frac{1}{2x^2 - 12x + 21} dx$$
 (10 mks)

(b) Evaluate the following integrals

(i)
$$\int 3x^2 \sqrt{x+4} \, \mathrm{dx}$$
 (6 mks)

(ii)
$$\int \sqrt{\tan x} \sec^2 x dx$$
 (4 mks)

QUESTION FIVE (20 MARKS)

(a) Determine the area of the region bounded by $y = 2x^2 + 10$, y = 4x + 16, x = -2 and x = 5

(b) Find the length of the curve
$$y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$$
 from $x = 0$ to $x = 2$ (5 mks)

(c) Evaluate the following (i) $\int \cos^5 \theta d\theta$ (8 mks) (ii) $\int \cos^2 \theta d\theta$