KABARAK



UNIVERSITY

## **UNIVERSITY EXAMINATIONS**

## 2009/20010 ACADEMIC YEAR

# FOR THE DEGREE OF BACHELOR OF EDUCATION

# **SCIENCE**

# COURSE CODE: MATH 121

# **COURSE TITLE: CALCULUS II**

- STREAM: SESSION I
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.

DATE: 12/08/2010

## **INSTRUCTIONS:**

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

## PLEASE TURNOVER

### **QUESTION ONE (30 MARKS) COMPULSORY**

(a) i) 
$$\int 3e^x + 5\cos x - 10\sec^2 x dx$$
 (4 marks)  
ii)  $\int 2\sec w \tan w + \frac{1}{6w} dw$  (4 marks)

- (b) Use the simpsons Rule with n=4 to estimate  $\int_{0}^{1} 5x^{4} dx \text{ and compare with exact value of the integral}} \qquad (4 \text{ mks})$ (c) Evaluate the following integrals by substitution method (i)  $\int \cos(4x+5) dx$  (3 mks) (iii)  $\int xe^{-x^{2}} dx$  (3 mks) (d) Integrate  $\int x^{4}e^{\frac{x}{2}} dx$  by parts (4 mks)
- (e) (e) Find the area of the region enclosed by  $y = x^2$  and  $y = \sqrt{x}$  (4 mks)
- (f) Determine the volume of the solid obtained by rotation the region bounded by  $y = \sqrt[3]{x}$  x = 8 and the x-axis about the x-axis (4 mks)

#### **QUESTION TWO** (20 MARKS)

| (a) Integrate the following by parts      |         |
|-------------------------------------------|---------|
| (i) $\int e^{\theta} \cos \theta d\theta$ | (6 mks) |
| (ii) $\int w^2 \sin(10w) dx$              | (6 mks) |

(b) Evaluate 
$$\int \frac{x^2 - 29x + 5dx}{(x-4)^2(x^2+3)}$$
 (5 mks)

(c) Find 
$$\frac{df}{dy}$$
 if  $f(x,y) = y\sin xy$  (3 mks)

#### **QUESTION THREE (20 MKS)**

(a) Determine the reduction formula for  $I_m = \int \cos^m x dx$ Use the result to determine  $I_7$  (10 marks)

(b) Approximate 
$$\int_0^2 \frac{1}{x^2 + 1}$$
 with n = 4 using  
(i) Trapezoidal Rule (5 mks)  
(ii) Simpson's Rule (5 mks)

## **QUESTION FOUR (20 MKS)**

(a) Evaluate 
$$\int \frac{1}{2x^2 - 12x + 21} dx$$
 (10 mks)

(b) Evaluate the following integrals

(i) 
$$\int 3x^2 \sqrt{x+4} \, \mathrm{d}x$$
 (6 mks)

(ii) 
$$\int \sqrt{\tan x} \sec^2 x dx$$
 (4 mks)

### **QUESTION FIVE (20 MARKS)**

(a) Determine the area of the region bounded by  $y = 2x^2 + 10$ , y = 4x + 16, x = -2 and x = 5

(b) Find the length of the curve 
$$y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$$
 from  $x = 0$  to  $x = 2$  (5 mks)

(c) Evaluate the following (i)  $\int \cos^5 \theta d\theta$  (8 mks) (ii)  $\int \cos^2 \theta d\theta$