

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: BOTA 426

COURSE TITLE: CELL AND MOLECULAR BIOLOGY

STREAM: SESSION VIII

DAY: WEDNESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 07/04/2010

INSTRUCTIONS:

Answer All questions in SECTION (A) and any two (2) questions in SECTION (B)

PLEASE TURN OVER

SECTION A: Answer All Questions (40 Marks)

1.	a) Distinguish between the following terms:							
	i) Nucleosome and nucleolema							
	ii) Terminal and initial meiosis							
	iii) Frameshift mutation and non-sense mutation	(6 mks)						
	b) Describe the functions of the Golgi apparatus	(4 mks)						
2.	a) List five differences between prokaryotic and eukaryotic cells.	(5 mks)						
	b) Give the structure of Guanosine 5'-monophosphate	(2 mks)						
	c) Describe three food species with genetically modified versions,	od species with genetically modified versions,						
	and state the new property in them.	(3 mks)						
3.	a) Discuss the significance of mitosis	(2 mks)						
	b) Explain how rate of cell cycle is regulated.	(4 mks)						
	b) Discuss the lines of evidence to show that cellular ageing is a genetically							
	programmed event.	(4 mks)						
4.	a) Draw a well labeled diagram of a plant cell.	(5 mks)						
	st. (5 mks)							
	SECTION B: Answer Two (2) Questions Only (30 Marks)							
5.	a) Describe the key steps in gene expression.	(12 mks)						
	b) Given the genetic code, draw out the polypeptide formed from the							
	DNA copy below: 5'-AGG TTG CGT TAG TAC-3'	(3 mks)						
6.	Differentiate between mitosis and meiosis and describe the process of meiosis							
	during oogenesis in humans.	(15 mks)						

7. Describe the process of energy production in mitochondrion.

(15 mks)

2nd base in codon									
		U	O	Α	G				
1st base in codon	U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	⊃∪∢g	3rd ba		
	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg	⊃∪∢g	3rd base in codon		
	Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	⊃∪∢⊌	on		
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	⊃∪∢g			

The mRNA genetic code