KABARAK

UNIVERSITY

SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 313

- COURSE TITLE: CHEMICAL KINETICS
- STREAM: SESSION III
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 17/03/2009

INSTRUCTIONS TO CANDIDATES:

- (1) Attempt all questions.
- (2) Graph papers provided (two)

PLEASE TURN OVER

Useful Constants

 $\overline{h} = 6.626 \times 10^{-34} \text{ JS}$ $C = 2.998 \times 10^8 \text{ ms}^{-1}$ $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$

QUESTION ONE

- (a) Define the following terms;
 - (i) Rate law of a reaction (1 mark)
 - (ii) Order of a reaction
- (b) (i) Calculate the average rate of decomposition of N_2O_5 ,

 $\frac{-\Delta(N_205)}{\Delta t}$, for the reaction:

 $2N_2O_{5 (g)} \rightarrow 4NO_{(g)} + O_{2 (g)}$ during the time interval t = 600s and t = 1200s using the following data.

Time	[N ₂ O ₅]	[0 ₂]
600s	1.24 x 10 ⁻² M	0.0021M
1200s	0.93 x 10 ⁻² M	0.0036M

- (ii) Calculate the rate of formation of 0_2
- (iii) For a reaction of the form $aA + bB \rightarrow cC + dD$ where a, b, c and d are the number of molecules of substances A, B. C and D respectively, use the law of mass action to prove that r (rate of the reaction) = k[A]^a[B]^b, where k is the rate constant.

(3 marks).

(2 marks)

(1 mark)

- (c) The reaction A → B has been found to be second order with respect to A.
 (i) Write the rate expression for this reaction.
 - (ii) What are the units of its rate constant if the concentrations are expressed as moldm⁻³ and time in seconds? (2 marks)
 - (iii)The rat constant of a zero-order reaction is $0.2 \text{ moll}^{-1} \text{ hr}^{-1}$. What will be the initial concentration of the reactant, if after half an hour, its half life, the concentration is 0.05 moll^{-1} ? (3 marks)
- (d) Consider the following reaction between bromate ions and bromide ions in acidic aqueous solution.

 $Bro_{3(aq)} + 5Br_{(aq)} + 6H^{+}_{(aq)} \rightarrow 3Br_{2(L)} + 3H_2O_{(l)}$

The table below gives the results of four experiments. Using these data;

- (i) Determine the orders with respect to each of the three reactants.
- (ii) Determine the overall order of the reaction and
- (iii) Calculate the rate constant. (Use initial rates method).

(8 marks)

Experiment	Initial Concetration of	Concetration of Initial Conc. Of Br-		Measured initial
	$BrO_3^{-}(moll-1)$	(moll-1)	$H^+(moll-1)$	rate Moll ⁻¹ s ⁻¹)
1	0.10	0.10	0.10	8.0 x 10 ⁻⁴
2	0.20	0.10	0.10	1.6 x 10 ⁻³
3	0.20	0.20	0.10	$3.2 \text{ x} 10^{-3}$
4	0.10	0.10	0.20	$3.2 \text{ x} 10^{-3}$

QUESTION TWO

(a) (i) Consider the following 3^{rd} order reaction; $2FeCl_{3(aq)} + SnCl_{2(aq)} \rightarrow 2FeCl_{2(aq)} + SnCl_{4(aq)}$

If the initial concentration of $SnCl_2$ and $FeCl_3$ are equal to a and 2a respectively, show that the integrated rate law is given by;

Kt =
$$\frac{1}{8(a-x)^2} - \frac{1}{8a^2}$$
 (6 marks)

(ii) The following data were obtained at 25° C for the same reaction in a (i) above;

T(min)	1	3	7	11	40
Y	0.01434	0.02664	0.36650	0.04102	0.05058

where y is the amount of $FeCl_3$ reacted in moles per litre. If the initial concentrations of $SnCl_2$ and $FeCl_3$ were 0.03125 and 0.0625 moles per litre respectively, show by the method of rate constants that the reaction is indeed third order. (6 marks)

- (b) (i) Define the term activation energy (Ea) (1 mark)
 - (ii) The activation energy Ea, for a certain reaction is 125KJmoL⁻¹. A catalyst is added to the reaction and the rate of the catalyzed reaction is 150 times faster than the un-catalyzed reaction at 300k. Assuming the frequency factor is the same for both the catalyzed and un-catalyzed reaction, calculate the activation energy for the catalyzed reaction.

QUESTION THREE

(a) Outline the requirements that a reaction mechanism must fulfill in order to be validated.

(2 marks)

(b) In the gas phase, the production of phosgene COCl₂ from chlorine Cl₂ and carbon monoxide Co proceeds by the following mechanism.

(i)
$$\operatorname{Cl}_2 \xrightarrow{k_1} \operatorname{2Cl} (\text{fast equilibrium})$$

(ii)
$$Cl + CO \xrightarrow{k_2} COCl (fast equilibrium)$$

(iii)
$$\operatorname{COCl} + \operatorname{Cl}_2 \xrightarrow{k_3} \operatorname{COCl}_2 + \operatorname{Cl}(\operatorname{slow})$$

(iv)
$$2\text{Cl} \xrightarrow{K_4} \text{Cl}_2$$
 (fast)

- (1) What is the overall reaction? (1 mark)
- (2) Which species are intermediates? (1 mark)
- (3) Deduce the rate low for this reaction (6 marks)
- (c) (i) Define the term heterogenous catalyst. (1 mark)
 - (ii) Heterogenous catalysis depends on at least one reactant being adsorbed
 (usually chemisorbed) and modified to a form in which it readily undergoes
 reaction. Outline the steps involved in this surface reaction. (5 marks)

QUESTION FOUR

- (a) Explain the following terms as used in photochemistry;
 - (i) Photochemical equillibria
 - (ii) Photosensitization
 - (iii) Quantum efficiency (3 marks)

- (b) In an experiment to measure the quantum efficiency of a photochemical reaction, the absorbing substance was exposed to 490nm light from a 100w source for 45mins. The intensity of the transmitted light was 40% of the incident light. As a result of irradiation, 0.344 mols of the absorbing substance decomposed. Determine the quantum efficiency.
- (c) Explain the meanings of the following terms;
 - (i) Simultaneous reactions
 - (ii) Steady state approximation
 - (iii) Consecutive reaction
 - (iv) Parallel reactions

(4 marks)