KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: CHEM 421

- COURSE TITLE: COMPARATIVE STUDY OF d AND f BLOCKS ELEMENTS
- STREAM: Y4S2
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 11/08/2009

INSTRUCTIONS TO CANDIDATES:

Answer ALL questions

PLEASE TURN OVER

1.	(a) What is a lantanide?				[1mark]			
	(b) Write the electron configuration of	the following	ng atoms o	or ions				
	(i) Ce (ii) Eu (iii) Gd (vi) Yb (v	(i) Ce (ii) Eu (iii) Gd (vi) Yb (v) Ac						
	[Atomic numbers: Ce = 58, Eu	= 63, Gd =	64, Yb =	70 and A	c = 89]			
					[5 marks]			
	(c) Briefly comment on your answer in	[2 marks]						
	(d) What is the possible oxidation state of Yb? Briefly explain your answer							
					[2 marks]			
	(e) Account for the following observations;							
	(i) d and f block elements form con	mplexes			[2 marks]			
	(ii) Hg is a metallic element but a	liquid at roo	om temper	ature	[2marks]			
	(f) The table below shows the variation energies of some group IIIB transit questions that follow:	n of atomic tion elemer	radii and its. Study	ionization it and ans	n swer the			
		~		-				
	Element		Yb 190	La 197				
	Element Atomic radii (pm) First ionization energy (kJ/mol	Sc 162 633	Yb 180 600	La 187 538				
	Element Atomic radii (pm) First ionization energy (kJ/mol	Sc 162 633	Yb 180 600	La 187 538				
	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati	Sc 162 633 on of;	Yb 180 600	La 187 538				
	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii	Sc 162 633 on of;	Yb 180 600	La 187 538				
	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy	Sc 162 633 on of;	Yb 180 600	La 187 538	[4 marks]			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form	Sc 162 633 on of; co-ordinat	Yb 180 600	La 187 538	[4 marks] ily compared			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements.	Sc 162 633 on of; co-ordinat	Yb 180 600	La 187 538 ounds eas	[4 marks] ily compared [2 marks]			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give <i>four</i> similarities and <i>four</i> difference	Sc 162 633 on of; co-ordinat	Yb 180 600	La 187 538 ounds eas	[4 marks] ily compared [2 marks] es and			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give <i>four</i> similarities and <i>four</i> difference actinides.	Sc 162 633 on of; co-ordinat	Yb 180 600	La 187 538 ounds eas anthanide	[4 marks] ily compared [2 marks] es and [2 marks]			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give four similarities and four difference actinides. (c) Briefly discuss the three bonding the	Sc 162 633 on of; co-ordinat erences bet eories in tra	Yb 180 600 ion compo ween the l	La 187 538 ounds eas anthanide etal comp	[4 marks] ily compared [2 marks] es and [2 marks] pounds			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give four similarities and four difference actinides. (c) Briefly discuss the three bonding the	Sc 162 633 on of; co-ordinat erences bet eories in tra	Yb 180 600 ion compo ween the l	La 187 538 ounds eas anthanide	[4 marks] ily compared [2 marks] es and [2 marks] pounds [3 marks			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give four similarities and four difference actinides. (c) Briefly discuss the three bonding the discuss of compare the second secon	Sc 162 633 on of; co-ordinat erences bet eories in tra-	Yb 180 600 ion compo ween the l ansition m	La 187 538 ounds eas anthanide etal comp	[4 marks] ily compared [2 marks] es and [2 marks] pounds [3 marks . [2 marks]			
2.	Element Atomic radii (pm) First ionization energy (kJ/mol Briefly comment on the trend in variati (i) Atomic radii (ii) Ionization energy (a) Explain why d block elements form to the f block elements. (b) Give four similarities and four difference actinides. (c) Briefly discuss the three bonding the (d) State and explain two uses of comp (e) Briefly explain what is meant by "A	Sc 162 633 on of; co-ordinat erences bet eories in tra- ounds of the actinide cor	Yb 180 600 ion compo ween the l ansition m are f block attraction''	La 187 538 ounds eas anthanide etal comp elements and expl	[4 marks] ily compared [2 marks] es and [2 marks] pounds [3 marks . [2 marks] ain its			

- 3. (a) Describe the preparation, properties ,uses and the structure of nitrosonium pentaquo iron (I) sulphate. [7 marks]
 - (b) Account for the following observations;
 - (i) Lanthanide and actinide metal ions show sharp almost line like bands in their electronic spectra
 - (ii) Ce^{3+} shows exceptionally strong absorptions in the UV region
 - (iii) Transition metals readily form alloys with each other
 - (iv) Low valent transition metal ions readily form complexes with π -acid ligands
 - (iv) v_{CO} in carbonyl complexes is different from that of CO molecule
 - (v) Lanthanides and actinides generally have high boiling points compared to the main block elements

(vi) Co-ordination number less than 7 is rare in complexes of d-block e	elements
]	12 marks]

		-	-
4.	(a) Using molecular orbital theory show that CO is π -acid ligand.	[4 ma	rks]

(b) Illustrating with an example each, give three methods of preparing a metal carbonyl [6 marks]

- (c) (i) Ni(CO)₄ is tetrahedral and diamagnetic. Describe the bonding in this complex using valence bond theory.
 [Atomic number Ni=28]
 [4 marks]
 - (ii) Calculate the effective atomic number of Ni in the complex and comment briefly on your answer [2 marks]
- (d) Infrared and x-ray studies of Co₂ (CO)₈, shows that the compound does not have a bridging carbonyl and the metal ions are in an octahedral environment. Describe the bonding in the compound using valence bond theory.
 [Atomic number; Co =27]
- (e) Differentiate between organometallic compound and coordination compound [1 mark]