KABARAK



UNIVERSITY

## SUPPLEMENTARY/SPECIAL EXAMINATIONS

## 2008/2009 ACADEMIC YEAR

## FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: CHEM 424
- **COURSE TITLE:** COMPARATIVE STUDY OF D AND F BLOCKS ELEMENTS
- STREAM: SESSION IV
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 17/03/2009

**INSTRUCTIONS TO CANDIDATES:** 

Answer ALL questions

## PLEASE TURN OVER

- 1. (a) Write the electron configuration of the following atoms or ions

  (i) Ti<sup>3+</sup> (ii) Cr (iii) Cu<sup>2+</sup> (iv) Gd (v) Yb
  [Atomic numbers: Ti =22, Cr =24, Cu =28, Ce = 58 and Yb = 70]
  [5 marks]
  (b) Briefly comment on your answer in (ii) and (iv) above
  (c) (i) What are the possible oxidation states of Yb?
  - (ii) Defend your answer in c (i) above? [2 marks]

| 2. | (a) Monazite sand is the most important and most widespread mineral that accounts for 78 % of the rare earths mined. Outline the process |           |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|    |                                                                                                                                          |           |  |
|    | followed in the extraction of lanthanum from Monazite.                                                                                   | [5 marks] |  |
|    | (b) (i) State two uses of compounds the f block elements                                                                                 | [2 marks] |  |
|    | (ii) What properties of the f-block elements make the suitable                                                                           |           |  |
|    | for uses in b (i) above?                                                                                                                 | [2 marks] |  |
|    | (c) Briefly explain using chemical equation how $Ce(CH_3)_3$ can be                                                                      |           |  |
|    | prepared in the laboratory                                                                                                               | [3 marks] |  |

| 3.                                                          | 3. (a) State and explain four similarities and four differences between                         |           |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|--|
|                                                             | the $d$ and the $f$ block elements                                                              | [4 marks] |  |
|                                                             | (b) Compare and constrast the lanthanides and actinides                                         |           |  |
|                                                             | [Hint: State and explain four differences and four similarities between the elements in the two |           |  |
|                                                             | series] [4 marks                                                                                |           |  |
| (c) Briefly discuss three methods used in separation of the |                                                                                                 |           |  |
|                                                             | f-block elements                                                                                | [3 marks  |  |
|                                                             | (d) (i) Briefly explain what is meant by "lanthanide contraction                                | [2 marks] |  |

| 4. | (a) The complex ion $[Fe(H_2O)_6]^{2+}$ is paramagnetic with four unpaired electrons. Account for the |             |  |
|----|-------------------------------------------------------------------------------------------------------|-------------|--|
|    | observation using the following bond theories                                                         |             |  |
|    | (i) Valence bond (ii) Crystal field (iii) molecular orbital                                           |             |  |
|    | [Atomic number; $Fe = 26$ ]                                                                           | [10 marks]  |  |
|    | (b) State two advantages of crystal field theory over valence bond                                    |             |  |
|    | theory                                                                                                | [2 marks]   |  |
|    | (b) Account for the following observations;                                                           |             |  |
|    | (i) Actinide and lanthanide ions give rise to very sharp bands in                                     |             |  |
|    | electronic spectra                                                                                    | [2 marks]   |  |
|    | (ii) Square planar $d^8$ paramagnetic complexes are extremely rare                                    | [2 marks]   |  |
|    | (iii) $\operatorname{Co}^{2+}$ is stable in aqueous solution, but in presence of a strong             |             |  |
|    | field ligand it is easily oxidized to form $\text{Co}^{3+}$                                           |             |  |
|    | [Atomic number; Co=27]                                                                                | [2.5 marks] |  |
|    | (iv) High valent transition metal ion readily form complexes with                                     |             |  |
|    | $\pi$ -donor ligands                                                                                  | [2 marks]   |  |

- 5. (a) The following absorption bands are found in the spectrum of [V(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> ion;
  17,200 cm<sup>-1</sup>, 25,600 cm<sup>-1</sup> and 36000cm<sup>-1</sup>(charge transfer);
  [Atomic number; V=23]
  - (i) Interpret the spectrum of  $[V(H_2O)_6]^{2+}$  using Tanabe-Sugano diagram [ 3 marks]

(b) (i)Write short notes on selection rules in electronic transitions [4.5 marks]

(ii) Explain the mechanism under which **Larporte** rule is relaxed [2 marks]