KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 421

COURSE TITLE: COMPARATIVE STUDY OF d AND f

BLOCKS ELEMENTS

STREAM: Y4S2

DAY: MONDAY

TIME: 11.00 -1.00 P.M.

DATE: 08/12/2008

INSTRUCTIONS:

Answer all questions.

PLEASE TURN OVER

1. (a)	Write the elec	tron configurat	tion of the follo	owing atoms of	or ions;	
	(i) Ti ³⁺	(ii) Cr	(iii) Cu2 ⁺	(iv) Eu	(v) Yb	
	[Atomic nu	mbers: Ti = 22	2, Cr = 24, Cu	= 29, Eu = 63	and $Yb = 70$]	[5 mks]
(b)	(b) Briefly comment on your answer in (iv) and (v) above					
(c)	(c) (i) What are the possible oxidation states of Yb?					[2 mks]
(ii) Defend your answer in c (i) above.						[2 mks]
(d)	Write short no	otes on the follo	owing terms;			
	(i) Jahn-Tell	er distortion	(ii) nephelau	exetic effect.		[6 mks]
2. (a)	Monazite sar	nd is the most i	mportant and t	he most wide	spread mineral th	hat accounts
	for 78 % of	the rare earths	mined. Outline	e the process	followed in the e	xtraction of
	lanthanum fi	om Monazite.				[5 mks]
(b)	State two us	es of the f bloc	k elements and	their compo	unds.	[2 mks]
(c)	Briefly explain using chemical equation how Ce(CH ₃) ₃ can be prepared in the					in the
	laboratory.					[2 mks]
(d	(d) The following absorption bands are found in the spectrum of $[V(H_20$					³ ion;
	17,200 cm ⁻¹ ,	25,600 cm ⁻¹ ar	nd 36000 cm ⁻¹ (charge transf	er). Interpret the	spectrum
	of $[V(H_20)_6]^3$	3+ using Tanabo	e-Sugano diagr	am.		
	[Atomic num	[ber; V = 23]				[3 mks]
(e)	Explain the r	nechanism und	ler which Lar p	orte rule is r	elaxed.	[2 mks]
3. (a)	State and explain \mathbf{two} similarities and \mathbf{two} differences between and d d and the					
	f block elem	nents.				[4 mks]
(b)	Compare and contrast the lanthanides and actinides.					
	[Hint: State	and explain tw	o differences a	nd two simila	rities between the	e elements
	in the two se	eries].				
(c)	Briefly discu	ss three metho	ds used in sepa	ration of the	f block element	s. [6 mks]
(d)	Account for	the following of	observations;			
		_	_	in presence of	of a strong field li	gand it is
	-	idized to form				FQ 1.3
	[Atomic 1	number; Co = 1	27]			[3 mks]

ligands.		[2.5 mks]
- · · · · · · · · · · · · · · · · · · ·	s paramagnetic with four unpaired electronic this complex using the following bond theor	
[Atomic number; Fe = 26]		
(i) Valance bond theory	(ii) Crystal field theory	
(iii) Molecular orbital theor	y.	[10.5 mks]
(b) State two advantages and t	two disadvantages of crystal field theory ove	er molecular
orbitial theory.		[4 mks]
(c) Account for the following	observations;	
(i) Lanthanides are used to	o calibrate electronic spectrometers.	[2.5 mks]
(ii) Strength hydroxides o	f lanthanides decrease across the period.	[2.5 mks]

(ii) High valent transition metal ion readily forms complexes with $\boldsymbol{\pi}$ -donor